論文の概要: Optimal Transport on the Lie Group of Roto-translations
- arxiv url: http://arxiv.org/abs/2402.15322v3
- Date: Wed, 13 Nov 2024 14:17:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 19:24:41.458467
- Title: Optimal Transport on the Lie Group of Roto-translations
- Title(参考訳): ロート翻訳のリー群における最適輸送
- Authors: Daan Bon, Gautam Pai, Gijs Bellaard, Olga Mula, Remco Duits,
- Abstract要約: 我々は,SE2に特化して,リー群を超越した最適輸送のための計算フレームワークを開発する。
我々はいくつかの理論的貢献をする(行列リー群に一般化できる)。
We developed a Sinkhorn like algorithm can be effective by fast and accurate distance approximations of the Lie group and GPU friendly group convolutions。
- 参考スコア(独自算出の注目度): 1.8990839669542956
- License:
- Abstract: The roto-translation group SE2 has been of active interest in image analysis due to methods that lift the image data to multi-orientation representations defined on this Lie group. This has led to impactful applications of crossing-preserving flows for image de-noising, geodesic tracking, and roto-translation equivariant deep learning. In this paper, we develop a computational framework for optimal transportation over Lie groups, with a special focus on SE2. We make several theoretical contributions (generalizable to matrix Lie groups) such as the non-optimality of group actions as transport maps, invariance and equivariance of optimal transport, and the quality of the entropic-regularized optimal transport plan using geodesic distance approximations. We develop a Sinkhorn like algorithm that can be efficiently implemented using fast and accurate distance approximations of the Lie group and GPU-friendly group convolutions. We report valuable advancements in the experiments on 1) image barycentric interpolation, 2) interpolation of planar orientation fields, and 3) Wasserstein gradient flows on SE2. We observe that our framework of lifting images to SE2 and optimal transport with left-invariant anisotropic metrics leads to equivariant transport along dominant contours and salient line structures in the image. This yields sharper and more meaningful interpolations compared to their counterparts on R^2
- Abstract(参考訳): ロト翻訳群SE2は、画像データをこのリー群で定義された多方向表現に引き上げる手法により、画像解析に積極的に関心を寄せている。
このことは、画像デノイズ、測地線追跡、ロト翻訳同変深層学習のための横断保存流の衝撃的な応用につながった。
本稿では,SE2に特に焦点をあてた,リー群上での最適輸送のための計算フレームワークを開発する。
輸送写像としての群作用の非最適性、最適輸送の不変性と等式、測地線距離近似を用いたエントロピック-正則化された最適輸送計画の品質など、いくつかの理論的貢献をする(行列リー群に一般化できる)。
We developed a Sinkhorn like algorithm can be effective by fast and accurate distance approximations of the Lie group and GPU friendly group convolutions。
実験における価値ある進歩について報告する。
1)画像バリ中心補間
2)平面配向場の補間,及び
3) ワッサーシュタイン勾配はSE2上を流れる。
画像のSE2への持ち上げと、左不変の異方性指標による最適な輸送の枠組みが、画像の優越的な輪郭や有向線構造に沿った同変輸送につながることを観察する。
これはR^2上のそれよりも鋭く、より有意義な補間をもたらす
関連論文リスト
- Improving Neural Optimal Transport via Displacement Interpolation [16.474572112062535]
最適輸送(OT)理論は、ソース分布をターゲット分布に移動させるコスト最小化輸送マップを考察する。
本稿では, 安定度を向上し, 変位を利用した OT Map の近似性を向上する手法を提案する。
画像から画像への変換タスクにおいて,DIOTMが既存のOTベースモデルより優れていることを示す。
論文 参考訳(メタデータ) (2024-10-03T16:42:23Z) - Theory and Approximate Solvers for Branched Optimal Transport with
Multiple Sources [12.139222986297263]
分岐最適輸送(英: Branched Optimal Transport、BOT)は、エッジに沿った輸送コストが副付加的な最適輸送の一般化である。
トポロジを考えると、多くのソースやシンクに対してBOTネットワークの最適形状を効率的に見つける方法を示す。
論文 参考訳(メタデータ) (2022-10-14T10:51:16Z) - InfoOT: Information Maximizing Optimal Transport [58.72713603244467]
InfoOTは最適な輸送の情報理論の拡張である。
幾何学的距離を最小化しながら、ドメイン間の相互情報を最大化する。
この定式化は、外れ値に対して堅牢な新しい射影法をもたらし、目に見えないサンプルに一般化する。
論文 参考訳(メタデータ) (2022-10-06T18:55:41Z) - Parallel Structure from Motion for UAV Images via Weighted Connected
Dominating Set [5.17395782758526]
本稿では,クラスタマージのための大域的モデルを抽出し,効率よく正確なUAV画像配向を実現するために並列SfMソリューションを設計するアルゴリズムを提案する。
実験の結果,提案した並列SfMは17.4倍の効率向上と相対配向精度が得られることがわかった。
論文 参考訳(メタデータ) (2022-06-23T06:53:06Z) - Maximum Spatial Perturbation Consistency for Unpaired Image-to-Image
Translation [56.44946660061753]
本稿では,最大空間摂動整合(MSPC)と呼ばれる普遍正規化手法を提案する。
MSPCは空間摂動関数(T)と変換演算子(G)を可換(TG = GT)に強制する。
提案手法は,ほとんどのI2Iベンチマークにおいて最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2022-03-23T19:59:04Z) - Unpaired Image Super-Resolution with Optimal Transport Maps [128.1189695209663]
実世界の画像超解像(SR)タスクは、しばしば、教師付き技術の適用を制限するペアデータセットを持っていない。
本稿では,非バイアスのOTマップを知覚輸送コストで学習する未ペアSRのアルゴリズムを提案する。
我々のアルゴリズムは、大規模無人AIM-19データセット上で、最先端のパフォーマンスをほぼ提供する。
論文 参考訳(メタデータ) (2022-02-02T16:21:20Z) - Graph Optimal Transport for Cross-Domain Alignment [121.80313648519203]
クロスドメインアライメントはコンピュータビジョンと自然言語処理の基本である。
我々は、最近の最適輸送(OT)の進歩から発芽する原則的なフレームワークであるグラフ最適輸送(GOT)を提案する。
実験は、幅広いタスクにわたるベースライン上でのGOTの一貫性のある性能を示す。
論文 参考訳(メタデータ) (2020-06-26T01:14:23Z) - Where am I looking at? Joint Location and Orientation Estimation by
Cross-View Matching [95.64702426906466]
ジオタグ付き空中画像の大規模データベースを考えると、クロスビューなジオローカライゼーションは問題となる。
地上画像と空中画像の向きを知ることは、これらの2つのビュー間のあいまいさを著しく軽減することができる。
局所化時の横方向のアライメントを推定する動的類似マッチングネットワークを設計する。
論文 参考訳(メタデータ) (2020-05-08T05:21:16Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
我々は、Synergistic Image and Feature Alignment (SIFA)と名付けられた新しい教師なしドメイン適応フレームワークを提案する。
提案するSIFAは、画像と特徴の両方の観点から、ドメインの相乗的アライメントを行う。
2つの異なるタスクに対する実験結果から,SIFA法は未ラベル対象画像のセグメンテーション性能を向上させるのに有効であることが示された。
論文 参考訳(メタデータ) (2020-02-06T13:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。