Towards Principled Task Grouping for Multi-Task Learning
- URL: http://arxiv.org/abs/2402.15328v1
- Date: Fri, 23 Feb 2024 13:51:20 GMT
- Title: Towards Principled Task Grouping for Multi-Task Learning
- Authors: Chenguang Wang, Xuanhao Pan, Tianshu Yu
- Abstract summary: We present a novel approach to task grouping in Multitask Learning (MTL)
Our approach offers a more theoretically grounded method that does not rely on restrictive assumptions for constructing transfer gains.
- Score: 14.3385939018772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel approach to task grouping in Multitask Learning
(MTL), advancing beyond existing methods by addressing key theoretical and
practical limitations. Unlike prior studies, our approach offers a more
theoretically grounded method that does not rely on restrictive assumptions for
constructing transfer gains. We also propose a flexible mathematical
programming formulation which can accommodate a wide spectrum of resource
constraints, thus enhancing its versatility. Experimental results across
diverse domains, including computer vision datasets, combinatorial optimization
benchmarks and time series tasks, demonstrate the superiority of our method
over extensive baselines, validating its effectiveness and general
applicability in MTL.
Related papers
- Sample Efficient Myopic Exploration Through Multitask Reinforcement
Learning with Diverse Tasks [53.44714413181162]
This paper shows that when an agent is trained on a sufficiently diverse set of tasks, a generic policy-sharing algorithm with myopic exploration design can be sample-efficient.
To the best of our knowledge, this is the first theoretical demonstration of the "exploration benefits" of MTRL.
arXiv Detail & Related papers (2024-03-03T22:57:44Z) - Federated Multi-Task Learning on Non-IID Data Silos: An Experimental Study [17.555311732095483]
The FMTL approach consolidates the benefits of Federated Learning (FL) and Multi-Task Learning (MTL)
This paper introduces a novel framework, FMTL-Bench, for systematic evaluation of the FMTL paradigm.
arXiv Detail & Related papers (2024-02-20T10:13:44Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corex is a suite of novel general-purpose strategies that transform Large Language Models into autonomous agents.
Inspired by human behaviors, Corex is constituted by diverse collaboration paradigms including Debate, Review, and Retrieve modes.
We demonstrate that orchestrating multiple LLMs to work in concert yields substantially better performance compared to existing methods.
arXiv Detail & Related papers (2023-09-30T07:11:39Z) - When Multi-Task Learning Meets Partial Supervision: A Computer Vision Review [7.776434991976473]
Multi-Task Learning (MTL) aims to learn multiple tasks simultaneously while exploiting their mutual relationships.
This review focuses on how MTL could be utilised under different partial supervision settings to address these challenges.
arXiv Detail & Related papers (2023-07-25T20:08:41Z) - Task Aware Feature Extraction Framework for Sequential Dependence
Multi-Task Learning [1.0765359420035392]
We analyze sequential dependence MTL from rigorous mathematical perspective.
We propose a Task Aware Feature Extraction (TAFE) framework for sequential dependence MTL.
arXiv Detail & Related papers (2023-01-06T13:12:59Z) - Multi-Task Learning as a Bargaining Game [63.49888996291245]
In Multi-task learning (MTL), a joint model is trained to simultaneously make predictions for several tasks.
Since the gradients of these different tasks may conflict, training a joint model for MTL often yields lower performance than its corresponding single-task counterparts.
We propose viewing the gradients combination step as a bargaining game, where tasks negotiate to reach an agreement on a joint direction of parameter update.
arXiv Detail & Related papers (2022-02-02T13:21:53Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
Multi-task learning aims to explore task relatedness to improve individual tasks.
We propose variational multi-task learning (VMTL), a general probabilistic inference framework for learning multiple related tasks.
arXiv Detail & Related papers (2021-11-09T18:49:45Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
Multi-task learning (MTL) techniques have shown promising results w.r.t. performance, computations and/or memory footprint.
We provide a well-rounded view on state-of-the-art deep learning approaches for MTL in computer vision.
arXiv Detail & Related papers (2020-04-28T09:15:50Z) - A Simple General Approach to Balance Task Difficulty in Multi-Task
Learning [4.531240717484252]
In multi-task learning, difficulty levels of different tasks are varying.
We propose a Balanced Multi-Task Learning (BMTL) framework.
The proposed BMTL framework is very simple and it can be combined with most multi-task learning models.
arXiv Detail & Related papers (2020-02-12T04:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.