論文の概要: Retinotopic Mapping Enhances the Robustness of Convolutional Neural
Networks
- arxiv url: http://arxiv.org/abs/2402.15480v1
- Date: Fri, 23 Feb 2024 18:15:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-26 13:41:35.788233
- Title: Retinotopic Mapping Enhances the Robustness of Convolutional Neural
Networks
- Title(参考訳): retinotopic mappingは畳み込みニューラルネットワークのロバスト性を高める
- Authors: Jean-Nicolas J\'er\'emie and Emmanuel Dauc\'e and Laurent U Perrinet
- Abstract要約: 本研究では,葉緑体視覚の重要成分であるレチノトピックマッピングが,画像分類と局所化性能を向上させることができるかどうかを検討する。
標準オフザシェルフ畳み込みニューラルネットワーク(CNN)の入力にレノトピックマッピングが組み込まれた
驚くべきことに、レチノトピー的にマッピングされたネットワークは、分類において同等のパフォーマンスを達成した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Foveated vision, a trait shared by many animals, including humans, has not
been fully utilized in machine learning applications, despite its significant
contributions to biological visual function. This study investigates whether
retinotopic mapping, a critical component of foveated vision, can enhance image
categorization and localization performance when integrated into deep
convolutional neural networks (CNNs). Retinotopic mapping was integrated into
the inputs of standard off-the-shelf convolutional neural networks (CNNs),
which were then retrained on the ImageNet task. As expected, the
logarithmic-polar mapping improved the network's ability to handle arbitrary
image zooms and rotations, particularly for isolated objects. Surprisingly, the
retinotopically mapped network achieved comparable performance in
classification. Furthermore, the network demonstrated improved classification
localization when the foveated center of the transform was shifted. This
replicates a crucial ability of the human visual system that is absent in
typical convolutional neural networks (CNNs). These findings suggest that
retinotopic mapping may be fundamental to significant preattentive visual
processes.
- Abstract(参考訳): 人間を含む多くの動物が共有するfoveated visionは、生物学的視覚機能に重要な貢献をしているにもかかわらず、機械学習アプリケーションで完全には使われていない。
本研究では,foveated visionの重要な構成要素であるレチノトピーマッピングが,深層畳み込みニューラルネットワーク(cnns)に統合された場合の画像分類と局所化性能を向上させることができるかを検討する。
レチノトピックマッピングは、標準の既製の畳み込みニューラルネットワーク(CNN)の入力に統合され、ImageNetタスクで再トレーニングされた。
予想通り、対数極マッピングはネットワークの任意のズームや回転、特に孤立した物体を扱う能力を改善した。
驚くべきことに、retinotoply mapping networkは分類において同等のパフォーマンスを達成した。
さらに, ネットワークは, 変形の中心がずれた場合に, 分類の局所化が向上することを示した。
これは、典型的な畳み込みニューラルネットワーク(cnns)にはない人間の視覚システムの重要な能力を再現する。
これらの結果から,レチノトピーマッピングは重要な先行視覚過程の基本である可能性が示唆された。
関連論文リスト
- Progressive Retinal Image Registration via Global and Local Deformable Transformations [49.032894312826244]
我々はHybridRetinaと呼ばれるハイブリッド登録フレームワークを提案する。
キーポイント検出器とGAMorphと呼ばれる変形ネットワークを用いて、大域的な変換と局所的な変形可能な変換を推定する。
FIREとFLoRI21という2つの広く使われているデータセットの実験により、提案したHybridRetinaは最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2024-09-02T08:43:50Z) - Region Guided Attention Network for Retinal Vessel Segmentation [19.587662416331682]
本稿では,領域誘導型アテンションを用いたエンコーダデコーダ機構に基づく軽量網膜血管セグメンテーションネットワークを提案する。
Dice Losは偽陽性と偽陰性を等しく解析し、モデルがより正確なセグメンテーションを生成するように促す。
ベンチマークデータセットの実験では、最先端の手法と比較して、パフォーマンス(0.8285, 0.8098, 0.9677, 0.8166リコール、精度、精度、F1スコア)が向上した。
論文 参考訳(メタデータ) (2024-07-22T00:08:18Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Unleashing the Power of Depth and Pose Estimation Neural Networks by
Designing Compatible Endoscopic Images [12.412060445862842]
内視鏡画像の特性を詳細に解析し、画像とニューラルネットワークの互換性を改善する。
まず,完全な画像情報の代わりに部分的な画像情報を入力するMask Image Modelling (MIM) モジュールを導入する。
第2に、画像とニューラルネットワークの互換性を明確に向上させるために、内視鏡画像を強化する軽量ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-09-14T02:19:38Z) - Deep Angiogram: Trivializing Retinal Vessel Segmentation [1.8479315677380455]
本研究では,無関係な特徴をフィルタリングし,深部血管造影という潜像を合成するコントラスト型変分自動エンコーダを提案する。
合成ネットワークの一般化性は、画像コントラストとノイズの特徴の変動に敏感なモデルを実現するコントラスト損失によって改善される。
論文 参考訳(メタデータ) (2023-07-01T06:13:10Z) - Saccade Mechanisms for Image Classification, Object Detection and
Tracking [12.751552698602744]
生体視覚からのササード機構を用いて、ディープニューラルネットワークを分類や物体検出の問題をより効率的にする方法について検討する。
提案手法は、注意駆動型視覚処理とササードのアイデアに基づいており、注意に影響された眼球運動のミニチュア化を図っている。
論文 参考訳(メタデータ) (2022-06-10T13:50:34Z) - Prune and distill: similar reformatting of image information along rat
visual cortex and deep neural networks [61.60177890353585]
深部畳み込み神経ネットワーク(CNN)は、脳の機能的類似、視覚野の腹側流の優れたモデルを提供することが示されている。
ここでは、CNNまたは視覚野の内部表現で知られているいくつかの顕著な統計的パターンについて考察する。
我々は、CNNと視覚野が、オブジェクト表現の次元展開/縮小と画像情報の再構成と、同様の密接な関係を持っていることを示す。
論文 参考訳(メタデータ) (2022-05-27T08:06:40Z) - Self-Supervised Vision Transformers Learn Visual Concepts in
Histopathology [5.164102666113966]
我々は、様々な弱い教師付きおよびパッチレベルのタスクに対する検証を行い、様々な自己教師付きモデルを訓練することにより、病理学における良い表現を探索する。
我々の重要な発見は、DINOベースの知識蒸留を用いたビジョントランスフォーマーが、組織像におけるデータ効率と解釈可能な特徴を学習できることを発見したことである。
論文 参考訳(メタデータ) (2022-03-01T16:14:41Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
我々はVDNet(Ventral-Dorsal Networks)と呼ばれる新しいフレームワークを提案する。
人間の視覚システムの構造にインスパイアされた我々は「Ventral Network」と「Dorsal Network」の統合を提案する。
実験の結果,提案手法は最先端の物体検出手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-05-15T23:57:36Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。