論文の概要: Streaming IoT Data and the Quantum Edge: A Classic/Quantum Machine
Learning Use Case
- arxiv url: http://arxiv.org/abs/2402.15542v1
- Date: Fri, 23 Feb 2024 10:36:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-27 18:10:53.316166
- Title: Streaming IoT Data and the Quantum Edge: A Classic/Quantum Machine
Learning Use Case
- Title(参考訳): IoTデータと量子エッジのストリーミング: 古典的/量子機械学習のユースケース
- Authors: Sabrina Herbst, Vincenzo De Maio, Ivona Brandic
- Abstract要約: 量子機械学習を分散コンピューティング連続体に統合するためのエッジコンピューティングの利用について検討する。
我々は,IoTシナリオにおける量子機械学習分析の予備的結果を示す。
- 参考スコア(独自算出の注目度): 0.6554326244334868
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advent of the Post-Moore era, the scientific community is faced with
the challenge of addressing the demands of current data-intensive machine
learning applications, which are the cornerstone of urgent analytics in
distributed computing. Quantum machine learning could be a solution for the
increasing demand of urgent analytics, providing potential theoretical speedups
and increased space efficiency. However, challenges such as (1) the encoding of
data from the classical to the quantum domain, (2) hyperparameter tuning, and
(3) the integration of quantum hardware into a distributed computing continuum
limit the adoption of quantum machine learning for urgent analytics. In this
work, we investigate the use of Edge computing for the integration of quantum
machine learning into a distributed computing continuum, identifying the main
challenges and possible solutions. Furthermore, exploring the data encoding and
hyperparameter tuning challenges, we present preliminary results for quantum
machine learning analytics on an IoT scenario.
- Abstract(参考訳): ムーア時代が到来すると、科学コミュニティは、分散コンピューティングにおける緊急分析の基礎となる、現在のデータ集約型機械学習アプリケーションの要求に対処するという課題に直面している。
量子機械学習は、緊急分析の需要が増大し、理論的なスピードアップと宇宙効率が向上する解決策になり得る。
しかし、(1)古典から量子領域へのデータのエンコーディング、(2)ハイパーパラメータチューニング、(3)量子ハードウェアの分散コンピューティング連続体への統合といった課題は、緊急分析に量子機械学習を採用することを制限している。
本研究では,量子機械学習の分散コンピューティング連続体への統合におけるエッジコンピューティングの利用について検討し,主な課題と可能な解決策を特定する。
さらに、データエンコーディングとハイパーパラメータチューニングの課題を探求し、iotシナリオにおける量子機械学習分析の予備結果を示す。
関連論文リスト
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
量子機械学習(QML)は、量子コンピューティングの原理と従来の機械学習を組み合わせた急速に成長する分野である。
本稿では,変分量子回路を用いてQMLアーキテクチャを開発する機械学習パラダイムの量子コンピューティングについて述べる。
論文 参考訳(メタデータ) (2024-11-14T12:27:50Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Variational data encoding and correlations in quantum-enhanced machine
learning [2.436161840735876]
我々は,古典的データを量子状態に変換するための効果的な符号化プロトコルを開発した。
また、量子加速を妨げる必然的なノイズに対処する必要性にも対処する。
機械学習から学習の概念を適用することで、学習可能なプロセスを符号化するデータを描画する。
論文 参考訳(メタデータ) (2023-12-13T07:55:57Z) - Quantum-Assisted Simulation: A Framework for Developing Machine Learning Models in Quantum Computing [0.0]
本稿では、量子コンピューティングの歴史を調査し、既存のQMLアルゴリズムを検証し、QMLアルゴリズムのシミュレーションを作成するための簡易な手順を提案する。
従来の機械学習と量子機械学習の両方のアプローチを用いて、データセット上でシミュレーションを行う。
論文 参考訳(メタデータ) (2023-11-17T07:33:42Z) - Coreset selection can accelerate quantum machine learning models with
provable generalization [6.733416056422756]
量子ニューラルネットワーク(QNN)と量子カーネルは、量子機械学習の領域において顕著な存在である。
我々は、QNNと量子カーネルのトレーニングを高速化することを目的とした、コアセット選択という統一的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-19T08:59:46Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Quantum Federated Learning for Distributed Quantum Networks [9.766446130011706]
本稿では,量子力学の興味深い特徴を利用した分散量子ネットワークのための量子フェデレーション学習を提案する。
分散量子ネットワーク内のクライアントがローカルモデルをトレーニングするのを助けるために、量子勾配降下アルゴリズムが提供される。
量子セキュアなマルチパーティ計算プロトコルを設計し,中国の残差定理を用いた。
論文 参考訳(メタデータ) (2022-12-25T14:37:23Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。