Sparse Probabilistic Synthesis of Quantum Operations
- URL: http://arxiv.org/abs/2402.15550v2
- Date: Thu, 31 Oct 2024 12:17:46 GMT
- Title: Sparse Probabilistic Synthesis of Quantum Operations
- Authors: Bálint Koczor,
- Abstract summary: Many important quantum operations, such as continuous rotation gates in quantum computing or broadband pulses in NMR or MRI applications, can only be implemented approximately using finite quantum resources.
This work develops an approach that enables -- at the cost of a modestly increased measurement repetition rate -- exact implementations on average.
- Score: 0.0
- License:
- Abstract: Successful implementations of quantum technologies require protocols and algorithms that use as few quantum resources as possible. However, many important quantum operations, such as continuous rotation gates in quantum computing or broadband pulses in NMR or MRI applications, can only be implemented approximately using finite quantum resources. This work develops an approach that enables -- at the cost of a modestly increased measurement repetition rate -- exact implementations on average. One proceeds by first building a library of a large number of different approximations to the desired gate operation; by randomly selecting these operations according to a pre-optimised probability distribution, one can on average implement the desired operation with a rigorously controllable approximation error. The approach relies on sophisticated tools from convex optimisation to efficiently find optimal probability distributions. A diverse spectrum of applications are demonstrated as (a) exactly synthesising rotations in fault-tolerant quantum computers using only low T-count circuits and (b) synthesising broadband and band-selective pulses of superior performance in quantum optimal control with (c) further applications in NMR or MRI. The approach is very general and a broad spectrum of practical applications in quantum technologies are explicitly demonstrated.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Surrogate optimization of variational quantum circuits [1.0546736060336612]
Variational quantum eigensolvers are touted as a near-term algorithm capable of impacting many applications.
Finding algorithms and methods to improve convergence is important to accelerate the capabilities of near-term hardware for VQE.
arXiv Detail & Related papers (2024-04-03T18:00:00Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Numerical Gate Synthesis for Quantum Heuristics on Bosonic Quantum
Processors [1.195496689595016]
We study the framework in the context of qudits which are controllable electromagnetic modes of a superconducting cavity system.
We showcase control of single-qudit operations up to eight states, and two-qutrit operations, mapped respectively onto a single mode and two modes of the resonator.
arXiv Detail & Related papers (2022-01-19T18:55:13Z) - Estimating gate-set properties from random sequences [0.0]
Current quantum devices are only capable of short unstructured gate sequences followed by native measurements.
A single experiment - random sequence estimation - solves a wealth of estimation problems.
We derive robust channel variants of shadow estimation with close-to-optimal performance guarantees.
arXiv Detail & Related papers (2021-10-25T18:01:25Z) - Properties and Application of Gaussian Quantum Processes [0.0]
We show that generic coupler characterized by Gaussian unitary process can be transformed into a high-fidelity transducer.
We study the quantum noise theory for optical parameter sensing and its potential in providing great measurement precision enhancement.
All the analyses originated from the fundamental quantum commutation relations, and therefore are widely applicable.
arXiv Detail & Related papers (2021-07-03T18:01:34Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
We propose that quantum circuits can be modeled as queuing networks.
Our method is scalable and has the potential speed and precision necessary for large scale quantum circuit compilation.
arXiv Detail & Related papers (2021-06-26T10:55:52Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.