Estimating gate-set properties from random sequences
- URL: http://arxiv.org/abs/2110.13178v3
- Date: Thu, 31 Aug 2023 04:41:19 GMT
- Title: Estimating gate-set properties from random sequences
- Authors: J. Helsen, M. Ioannou, J. Kitzinger, E. Onorati, A. H. Werner, J.
Eisert, I. Roth
- Abstract summary: Current quantum devices are only capable of short unstructured gate sequences followed by native measurements.
A single experiment - random sequence estimation - solves a wealth of estimation problems.
We derive robust channel variants of shadow estimation with close-to-optimal performance guarantees.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With quantum computing devices increasing in scale and complexity, there is a
growing need for tools that obtain precise diagnostic information about quantum
operations. However, current quantum devices are only capable of short
unstructured gate sequences followed by native measurements. We accept this
limitation and turn it into a new paradigm for characterizing quantum
gate-sets. A single experiment - random sequence estimation - solves a wealth
of estimation problems, with all complexity moved to classical post-processing.
We derive robust channel variants of shadow estimation with close-to-optimal
performance guarantees and use these as a primitive for partial, compressive
and full process tomography as well as the learning of Pauli noise. We discuss
applications to the quantum gate engineering cycle, and propose novel methods
for the optimization of quantum gates and diagnosing cross-talk.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - YAQQ: Yet Another Quantum Quantizer -- Design Space Exploration of Quantum Gate Sets using Novelty Search [0.9932551365711049]
We present a software tool for comparative analysis of quantum processing units and control protocols based on their native gates.
The developed software, YAQQ (Yet Another Quantum Quantizer), enables the discovery of an optimized set of quantum gates.
arXiv Detail & Related papers (2024-06-25T14:55:35Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Sample-efficient verification of continuously-parameterized quantum
gates for small quantum processors [0.0]
We demonstrate a procedure for sample-efficient verification of quantum gates for small quantum processors.
We show that fidelity estimates made via this technique have lower variance than fidelity estimates made via cross-entropy benchmarking.
This provides an experimentally-relevant advantage in sample efficiency when estimating the fidelity loss to some desired precision.
arXiv Detail & Related papers (2022-05-25T22:52:23Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
"engineered likelihood function" (ELF) is used for carrying out Bayesian inference.
We show how the ELF formalism enhances the rate of information gain in sampling as the physical hardware transitions from the regime of noisy quantum computers.
This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.
arXiv Detail & Related papers (2020-06-16T17:46:18Z) - A variational toolbox for quantum multi-parameter estimation [0.7734726150561088]
We introduce a general framework which allows for sequential updates of variational parameters to improve probe states and measurements.
We then demonstrate the practical functioning of the approach through numerical simulations.
We prove the validity of a general parameter-shift rule for noisy evolutions.
arXiv Detail & Related papers (2020-06-11T10:10:20Z) - Topological Quantum Compiling with Reinforcement Learning [7.741584909637626]
We introduce an efficient algorithm that compiles an arbitrary single-qubit gate into a sequence of elementary gates from a finite universal set.
Our algorithm may carry over to other challenging quantum discrete problems, thus opening up a new avenue for intriguing applications of deep learning in quantum physics.
arXiv Detail & Related papers (2020-04-09T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.