Morphological Symmetries in Robotics
- URL: http://arxiv.org/abs/2402.15552v2
- Date: Tue, 4 Jun 2024 08:54:45 GMT
- Title: Morphological Symmetries in Robotics
- Authors: Daniel OrdoƱez-Apraez, Giulio Turrisi, Vladimir Kostic, Mario Martin, Antonio Agudo, Francesc Moreno-Noguer, Massimiliano Pontil, Claudio Semini, Carlos Mastalli,
- Abstract summary: morphological symmetries are intrinsic properties of the robot's morphology.
These symmetries extend to the robot's state space and sensor measurements.
For data-driven methods, we demonstrate that morphological symmetries can enhance the sample efficiency and generalization of machine learning models.
In the context of analytical methods, we employ abstract harmonic analysis to decompose the robot's dynamics into a superposition of lower-dimensional, independent dynamics.
- Score: 45.32599550966704
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a comprehensive framework for studying and leveraging morphological symmetries in robotic systems. These are intrinsic properties of the robot's morphology, frequently observed in animal biology and robotics, which stem from the replication of kinematic structures and the symmetrical distribution of mass. We illustrate how these symmetries extend to the robot's state space and both proprioceptive and exteroceptive sensor measurements, resulting in the equivariance of the robot's equations of motion and optimal control policies. Thus, we recognize morphological symmetries as a relevant and previously unexplored physics-informed geometric prior, with significant implications for both data-driven and analytical methods used in modeling, control, estimation and design in robotics. For data-driven methods, we demonstrate that morphological symmetries can enhance the sample efficiency and generalization of machine learning models through data augmentation, or by applying equivariant/invariant constraints on the model's architecture. In the context of analytical methods, we employ abstract harmonic analysis to decompose the robot's dynamics into a superposition of lower-dimensional, independent dynamics. We substantiate our claims with both synthetic and real-world experiments conducted on bipedal and quadrupedal robots. Lastly, we introduce the repository MorphoSymm to facilitate the practical use of the theory and applications outlined in this work.
Related papers
- Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Dynamics Harmonic Analysis of Robotic Systems: Application in Data-Driven Koopman Modelling [24.738444847113232]
We introduce the use of harmonic analysis to decompose the state space of symmetric robotic systems into isotypic subspaces.
For linear dynamics, we characterize how this decomposition leads to a subdivision of the dynamics into independent linear systems on each subspace.
Our architecture, validated on synthetic systems and the dynamics of locomotion of a quadrupedal robot, exhibits enhanced generalization, sample efficiency, and interpretability.
arXiv Detail & Related papers (2023-12-12T17:34:42Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
We present DiffuseBot, a physics-augmented diffusion model that generates soft robot morphologies capable of excelling in a wide spectrum of tasks.
We showcase a range of simulated and fabricated robots along with their capabilities.
arXiv Detail & Related papers (2023-11-28T18:58:48Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - On discrete symmetries of robotics systems: A group-theoretic and
data-driven analysis [38.92081817503126]
We study discrete morphological symmetries of dynamical systems.
These symmetries arise from the presence of one or more planes/axis of symmetry in the system's morphology.
We exploit these symmetries using data augmentation and $G$-equivariant neural networks.
arXiv Detail & Related papers (2023-02-21T04:10:16Z) - Sample Efficient Dynamics Learning for Symmetrical Legged
Robots:Leveraging Physics Invariance and Geometric Symmetries [14.848950116410231]
This paper proposes a novel approach for learning dynamics leveraging the symmetry in the underlying robotic system.
Existing frameworks that represent all data in vector space fail to consider the structured information of the robot.
arXiv Detail & Related papers (2022-10-13T19:57:46Z) - Analytical Modelling of Exoplanet Transit Specroscopy with Dimensional
Analysis and Symbolic Regression [68.8204255655161]
The deep learning revolution has opened the door for deriving such analytical results directly with a computer algorithm fitting to the data.
We successfully demonstrate the use of symbolic regression on synthetic data for the transit radii of generic hot Jupiter exoplanets.
As a preprocessing step, we use dimensional analysis to identify the relevant dimensionless combinations of variables.
arXiv Detail & Related papers (2021-12-22T00:52:56Z) - Structured learning of rigid-body dynamics: A survey and unified view
from a robotics perspective [5.597839822252915]
We study supervised regression models that combine rigid-body mechanics with data-driven modelling techniques.
We provide a unified view on the combination of data-driven regression models, such as neural networks and Gaussian processes, with analytical model priors.
arXiv Detail & Related papers (2020-12-11T11:26:48Z) - Automatic Differentiation and Continuous Sensitivity Analysis of Rigid
Body Dynamics [15.565726546970678]
We introduce a differentiable physics simulator for rigid body dynamics.
In the context of trajectory optimization, we introduce a closed-loop model-predictive control algorithm.
arXiv Detail & Related papers (2020-01-22T03:54:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.