Neural optimal controller for stochastic systems via pathwise HJB
operator
- URL: http://arxiv.org/abs/2402.15592v1
- Date: Fri, 23 Feb 2024 20:19:06 GMT
- Title: Neural optimal controller for stochastic systems via pathwise HJB
operator
- Authors: Zhe Jiao, Xiaoyan Luo, Xinlei Yi
- Abstract summary: The aim of this work is to develop deep learning-based algorithms for high-dimensional control problems based on physics-informed learning and dynamic programming.
We introduce a pathwise operator associated with the HJB equation so that we can define a problem of physics-informed learning.
According to whether the optimal control has an explicit representation, two numerical methods are proposed to solve the physics-informed learning problem.
- Score: 2.8928489670253277
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The aim of this work is to develop deep learning-based algorithms for
high-dimensional stochastic control problems based on physics-informed learning
and dynamic programming. Unlike classical deep learning-based methods relying
on a probabilistic representation of the solution to the
Hamilton--Jacobi--Bellman (HJB) equation, we introduce a pathwise operator
associated with the HJB equation so that we can define a problem of
physics-informed learning. According to whether the optimal control has an
explicit representation, two numerical methods are proposed to solve the
physics-informed learning problem. We provide an error analysis on how the
truncation, approximation and optimization errors affect the accuracy of these
methods. Numerical results on various applications are presented to illustrate
the performance of the proposed algorithms.
Related papers
- Integrating Physics-Informed Deep Learning and Numerical Methods for Robust Dynamics Discovery and Parameter Estimation [0.0]
In this work, we combine deep learning techniques and classic numerical methods for differential equations to solve two challenging problems in dynamical systems theory.
Results demonstrate the effectiveness of the proposed approaches on a suite of test problems exhibiting chaotic dynamics.
arXiv Detail & Related papers (2024-10-05T22:40:02Z) - Towards Gaussian Process for operator learning: an uncertainty aware resolution independent operator learning algorithm for computational mechanics [8.528817025440746]
This paper introduces a novel Gaussian Process (GP) based neural operator for solving parametric differential equations.
We propose a neural operator-embedded kernel'' wherein the GP kernel is formulated in the latent space learned using a neural operator.
Our results highlight the efficacy of this framework in solving complex PDEs while maintaining robustness in uncertainty estimation.
arXiv Detail & Related papers (2024-09-17T08:12:38Z) - Hamilton-Jacobi Based Policy-Iteration via Deep Operator Learning [9.950128864603599]
We incorporate DeepONet with a recently developed policy scheme to numerically solve optimal control problems.
A notable feature of our approach is that once the neural network is trained, the solution to the optimal control problem and HJB equations can be inferred quickly.
arXiv Detail & Related papers (2024-06-16T12:53:17Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - A Block-Coordinate Approach of Multi-level Optimization with an
Application to Physics-Informed Neural Networks [0.0]
We propose a multi-level algorithm for the solution of nonlinear optimization problems and analyze its evaluation complexity.
We apply it to the solution of partial differential equations using physics-informed neural networks (PINNs) and show on a few test problems that the approach results in better solutions and significant computational savings.
arXiv Detail & Related papers (2023-05-23T19:12:02Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Deep Graphic FBSDEs for Opinion Dynamics Stochastic Control [27.38625075499457]
We present a scalable deep learning approach to solve opinion dynamics optimal control problems with mean field term coupling in the dynamics and cost function.
The proposed framework opens up the possibility for future applications on extremely large-scale problems.
arXiv Detail & Related papers (2022-04-05T22:07:32Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - ES-Based Jacobian Enables Faster Bilevel Optimization [53.675623215542515]
Bilevel optimization (BO) has arisen as a powerful tool for solving many modern machine learning problems.
Existing gradient-based methods require second-order derivative approximations via Jacobian- or/and Hessian-vector computations.
We propose a novel BO algorithm, which adopts Evolution Strategies (ES) based method to approximate the response Jacobian matrix in the hypergradient of BO.
arXiv Detail & Related papers (2021-10-13T19:36:50Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Logistic Q-Learning [87.00813469969167]
We propose a new reinforcement learning algorithm derived from a regularized linear-programming formulation of optimal control in MDPs.
The main feature of our algorithm is a convex loss function for policy evaluation that serves as a theoretically sound alternative to the widely used squared Bellman error.
arXiv Detail & Related papers (2020-10-21T17:14:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.