論文の概要: Anchor-free Clustering based on Anchor Graph Factorization
- arxiv url: http://arxiv.org/abs/2402.15688v2
- Date: Wed, 30 Oct 2024 02:32:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 20:43:53.205177
- Title: Anchor-free Clustering based on Anchor Graph Factorization
- Title(参考訳): アンカーグラフ分解に基づくアンカーフリークラスタリング
- Authors: Shikun Mei, Fangfang Li, Quanxue Gao, Ming Yang,
- Abstract要約: Anchor Graph Factorization(AFCAGF)に基づくAnchor-free Clusteringと呼ばれる新しい手法を提案する。
AFCAGFはアンカーグラフの学習において革新的であり、サンプル間のペア距離の計算のみを必要とする。
我々は,クラスタセンターとFKMのサンプル間のメンバシップ行列の概念を,複数のアンカーポイントとサンプルを含むアンカーグラフに進化させた。
- 参考スコア(独自算出の注目度): 17.218481911995365
- License:
- Abstract: Anchor-based methods are a pivotal approach in handling clustering of large-scale data. However, these methods typically entail two distinct stages: selecting anchor points and constructing an anchor graph. This bifurcation, along with the initialization of anchor points, significantly influences the overall performance of the algorithm. To mitigate these issues, we introduce a novel method termed Anchor-free Clustering based on Anchor Graph Factorization (AFCAGF). AFCAGF innovates in learning the anchor graph, requiring only the computation of pairwise distances between samples. This process, achievable through straightforward optimization, circumvents the necessity for explicit selection of anchor points. More concretely, our approach enhances the Fuzzy k-means clustering algorithm (FKM), introducing a new manifold learning technique that obviates the need for initializing cluster centers. Additionally, we evolve the concept of the membership matrix between cluster centers and samples in FKM into an anchor graph encompassing multiple anchor points and samples. Employing Non-negative Matrix Factorization (NMF) on this anchor graph allows for the direct derivation of cluster labels, thereby eliminating the requirement for further post-processing steps. To solve the method proposed, we implement an alternating optimization algorithm that ensures convergence. Empirical evaluations on various real-world datasets underscore the superior efficacy of our algorithm compared to traditional approaches.
- Abstract(参考訳): アンカーベースの手法は、大規模データのクラスタリングを扱う上で重要なアプローチである。
しかし、これらの手法は典型的には、アンカー点の選択とアンカーグラフの構築という2つの異なる段階を含む。
この分岐は、アンカー点の初期化とともに、アルゴリズム全体の性能に大きな影響を及ぼす。
これらの問題を緩和するため,Anchor Graph Factorization (AFCAGF) に基づくアンカーフリークラスタリング手法を提案する。
AFCAGFはアンカーグラフの学習において革新的であり、サンプル間のペア距離の計算のみを必要とする。
このプロセスは、簡単な最適化によって達成でき、アンカー点の明示的な選択の必要性を回避できる。
より具体的には、我々の手法はファジィk平均クラスタリングアルゴリズム(FKM)を強化し、クラスタセンターの初期化の必要性を排除した新しい多様体学習手法を導入する。
さらに、FKMにおけるクラスタセンターとサンプル間のメンバシップ行列の概念を、複数のアンカーポイントとサンプルを含むアンカーグラフに進化させる。
このアンカーグラフに非負行列因子分解(NMF)を用いることで、クラスタラベルの直接導出が可能となり、さらなる後処理ステップの必要がなくなる。
そこで本提案手法では,収束性を保証する交互最適化アルゴリズムを実装した。
様々な実世界のデータセットに対する実証的な評価は、従来の手法に比べてアルゴリズムの優れた有効性を示している。
関連論文リスト
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - Fuzzy K-Means Clustering without Cluster Centroids [21.256564324236333]
ファジィK平均クラスタリングは教師なしデータ分析において重要な手法である。
本稿では,クラスタセントロイドへの依存を完全に排除する,ファジィテクストK-Meansクラスタリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-07T12:25:03Z) - Interpretable Multi-View Clustering Based on Anchor Graph Tensor Factorization [64.00146569922028]
アンカーグラフの分解に基づくマルチビュークラスタリング法では,分解行列に対する適切なクラスタ解釈性が欠如している。
複数のビューからアンカーグラフを合成するアンカーグラフテンソルを分解するために、非負のテンソル因子分解を用いることにより、この制限に対処する。
論文 参考訳(メタデータ) (2024-04-01T03:23:55Z) - A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
サブセット選択は、トレーニングデータの小さな部分を特定する上で重要な役割を果たす、基本的な問題である。
我々は,k中心および不確かさサンプリング目的関数の重み付け和に基づいて,サブセットを計算する新しい係数3近似アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-12-17T04:41:07Z) - Progressive Sub-Graph Clustering Algorithm for Semi-Supervised Domain
Adaptation Speaker Verification [17.284276598514502]
マルチモデル投票と二重ガウスに基づく評価に基づく新しいプログレッシブサブグラフクラスタリングアルゴリズムを提案する。
破滅的なクラスタリング結果を防止するため、段階的にkを増大させ、二重ガウスに基づく評価アルゴリズムを用いる反復的手法を採用する。
論文 参考訳(メタデータ) (2023-05-22T04:26:18Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
平均推定なしで直接データのクラスタを検出する新しいクラスタリングアルゴリズムを提案する。
具体的には,バタワースフィルタを用いてデータ点間の距離行列を構成する。
異なる視点に埋め込まれた相補的な情報をうまく活用するために、テンソルのSchatten p-norm正規化を利用する。
論文 参考訳(メタデータ) (2023-05-12T03:01:41Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
教師なしメタラーニングのメソッドであるCACTUsは、擬似ラベル付きクラスタリングベースのアプローチである。
このアプローチはモデルに依存しないため、教師付きアルゴリズムと組み合わせてラベルのないデータから学習することができる。
このことの核となる理由は、埋め込み空間においてクラスタリングに優しい性質が欠如していることである。
論文 参考訳(メタデータ) (2022-09-27T19:04:36Z) - Gradient Based Clustering [72.15857783681658]
本稿では,クラスタリングの品質を計測するコスト関数の勾配を用いて,距離に基づくクラスタリングの一般的な手法を提案する。
アプローチは反復的な2段階の手順(クラスタ割り当てとクラスタセンターのアップデートの代替)であり、幅広い機能に適用できる。
論文 参考訳(メタデータ) (2022-02-01T19:31:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。