Shaving Weights with Occam's Razor: Bayesian Sparsification for Neural Networks Using the Marginal Likelihood
- URL: http://arxiv.org/abs/2402.15978v2
- Date: Mon, 04 Nov 2024 20:36:15 GMT
- Title: Shaving Weights with Occam's Razor: Bayesian Sparsification for Neural Networks Using the Marginal Likelihood
- Authors: Rayen Dhahri, Alexander Immer, Betrand Charpentier, Stephan Günnemann, Vincent Fortuin,
- Abstract summary: Neural network sparsification is a promising avenue to save computational time and memory costs.
We present Sparsifiability via the Marginal likelihood (SpaM), a pruning framework.
We demonstrate the effectiveness of our framework, especially at high sparsity levels.
- Score: 86.70040320522432
- License:
- Abstract: Neural network sparsification is a promising avenue to save computational time and memory costs, especially in an age where many successful AI models are becoming too large to na\"ively deploy on consumer hardware. While much work has focused on different weight pruning criteria, the overall sparsifiability of the network, i.e., its capacity to be pruned without quality loss, has often been overlooked. We present Sparsifiability via the Marginal likelihood (SpaM), a pruning framework that highlights the effectiveness of using the Bayesian marginal likelihood in conjunction with sparsity-inducing priors for making neural networks more sparsifiable. Our approach implements an automatic Occam's razor that selects the most sparsifiable model that still explains the data well, both for structured and unstructured sparsification. In addition, we demonstrate that the pre-computed posterior Hessian approximation used in the Laplace approximation can be re-used to define a cheap pruning criterion, which outperforms many existing (more expensive) approaches. We demonstrate the effectiveness of our framework, especially at high sparsity levels, across a range of different neural network architectures and datasets.
Related papers
- Confident magnitude-based neural network pruning [0.0]
Pruning neural networks has proven to be a successful approach to increase the efficiency and reduce the memory storage of deep learning models.
We leverage recent techniques on distribution-free uncertainty quantification to provide finite-sample statistical guarantees to compress deep neural networks.
This work presents experiments in computer vision tasks to illustrate how uncertainty-aware pruning is a useful approach to deploy sparse neural networks safely.
arXiv Detail & Related papers (2024-08-08T21:29:20Z) - FALCON: FLOP-Aware Combinatorial Optimization for Neural Network Pruning [17.60353530072587]
Network pruning offers a solution to reduce model size and computational cost while maintaining performance.
Most current pruning methods focus primarily on improving sparsity by reducing the number of nonzero parameters.
We propose FALCON, a novel-optimization-based framework for network pruning that jointly takes into account model accuracy (fidelity), FLOPs, and sparsity constraints.
arXiv Detail & Related papers (2024-03-11T18:40:47Z) - Neural Network Pruning by Gradient Descent [7.427858344638741]
We introduce a novel and straightforward neural network pruning framework that incorporates the Gumbel-Softmax technique.
We demonstrate its exceptional compression capability, maintaining high accuracy on the MNIST dataset with only 0.15% of the original network parameters.
We believe our method opens a promising new avenue for deep learning pruning and the creation of interpretable machine learning systems.
arXiv Detail & Related papers (2023-11-21T11:12:03Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
We introduce a novel heterogeneous memory augmentation approach for neural networks.
By introducing learnable memory tokens with attention mechanism, we can effectively boost performance without huge computational overhead.
We show our approach on various image and graph-based tasks under both in-distribution (ID) and out-of-distribution (OOD) conditions.
arXiv Detail & Related papers (2023-10-17T01:05:28Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
Neuro-symbolic approaches typically resort to fuzzy approximations of a probabilistic objective.
We show how to compute this efficiently for tractable circuits.
We test our approach on three tasks: predicting a minimum-cost path in Warcraft, predicting a minimum-cost perfect matching, and solving Sudoku puzzles.
arXiv Detail & Related papers (2023-02-28T00:04:22Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
We show that neural network pruning can improve empirical robustness of deep neural networks (NNs)
Our experiments show that by appropriately pruning an NN, its certified accuracy can be boosted up to 8.2% under standard training.
We additionally observe the existence of certified lottery tickets that can match both standard and certified robust accuracies of the original dense models.
arXiv Detail & Related papers (2022-06-15T05:48:51Z) - Neural Pruning via Growing Regularization [82.9322109208353]
We extend regularization to tackle two central problems of pruning: pruning schedule and weight importance scoring.
Specifically, we propose an L2 regularization variant with rising penalty factors and show it can bring significant accuracy gains.
The proposed algorithms are easy to implement and scalable to large datasets and networks in both structured and unstructured pruning.
arXiv Detail & Related papers (2020-12-16T20:16:28Z) - Layer-adaptive sparsity for the Magnitude-based Pruning [88.37510230946478]
We propose a novel importance score for global pruning, coined layer-adaptive magnitude-based pruning (LAMP) score.
LAMP consistently outperforms popular existing schemes for layerwise sparsity selection.
arXiv Detail & Related papers (2020-10-15T09:14:02Z) - HALO: Learning to Prune Neural Networks with Shrinkage [5.283963846188862]
Deep neural networks achieve state-of-the-art performance in a variety of tasks by extracting a rich set of features from unstructured data.
Modern techniques for inducing sparsity and reducing model size are (1) network pruning, (2) training with a sparsity inducing penalty, and (3) training a binary mask jointly with the weights of the network.
We present a novel penalty called Hierarchical Adaptive Lasso which learns to adaptively sparsify weights of a given network via trainable parameters.
arXiv Detail & Related papers (2020-08-24T04:08:48Z) - Weight Pruning via Adaptive Sparsity Loss [31.978830843036658]
Pruning neural networks has regained interest in recent years as a means to compress state-of-the-art deep neural networks.
We propose a robust learning framework that efficiently prunes network parameters during training with minimal computational overhead.
arXiv Detail & Related papers (2020-06-04T10:55:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.