論文の概要: GraphWiz: An Instruction-Following Language Model for Graph Problems
- arxiv url: http://arxiv.org/abs/2402.16029v1
- Date: Sun, 25 Feb 2024 08:41:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-27 15:41:18.691456
- Title: GraphWiz: An Instruction-Following Language Model for Graph Problems
- Title(参考訳): GraphWiz: グラフ問題に対する命令追従型言語モデル
- Authors: Nuo Chen, Yuhan Li, Jianheng Tang, Jia Li
- Abstract要約: GraphInstructは、言語モデルに明示的な推論パスを用いて、幅広いグラフ問題に対処する機能を持たせるために設計されたデータセットである。
GraphWizは、明確な推論プロセスを生成しながら、さまざまなグラフ問題タイプを解決できるオープンソースの言語モデルです。
拡張モデルであるGraphWiz-DPOは、9つのタスクで平均65%の精度を達成し、GPT-4を平均43.8%上回っている。
- 参考スコア(独自算出の注目度): 43.32154561543741
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have achieved impressive success across several
fields, but their proficiency in understanding and resolving complex graph
problems is less explored. To bridge this gap, we introduce GraphInstruct, a
novel and comprehensive instruction-tuning dataset designed to equip language
models with the ability to tackle a broad spectrum of graph problems using
explicit reasoning paths. Utilizing GraphInstruct, we build GraphWiz, an
open-source language model capable of resolving various graph problem types
while generating clear reasoning processes. To enhance the model's capability
and reliability, we incorporate the Direct Preference Optimization (DPO)
framework into the graph problem-solving context. The enhanced model,
GraphWiz-DPO, achieves an average accuracy of 65% across nine tasks with
different complexity levels, surpassing GPT-4 which has an average accuracy of
43.8%. Moreover, our research delves into the delicate balance between training
data volume and model performance, highlighting the potential for overfitting
with increased data. We also explore the transferability of the model's
reasoning ability across different graph tasks, indicating the model's
adaptability and practical application potential. Our investigation offers a
new blueprint and valuable insights for developing LLMs specialized in graph
reasoning and problem-solving.
- Abstract(参考訳): 大規模言語モデル(llm)は、いくつかの分野で素晴らしい成功を収めてきたが、複雑なグラフ問題を理解し解決する能力は、あまり研究されていない。
このギャップを埋めるために、言語モデルに明確な推論経路を用いて幅広いグラフ問題に取り組む能力を持たせるために設計された、新しく包括的な命令チューニングデータセットであるGraphInstructを導入する。
GraphInstructを利用することで、明確な推論プロセスを生成しながら、さまざまなグラフ問題タイプを解決可能な、オープンソースの言語モデルであるGraphWizを構築します。
モデルの能力と信頼性を高めるため、dpo(direct preference optimization)フレームワークをグラフ問題解決コンテキストに組み込んだ。
拡張モデルであるGraphWiz-DPOは、9つのタスクで平均65%の精度を達成し、GPT-4を平均43.8%上回っている。
さらに,本研究では,トレーニングデータ量とモデル性能の微妙なバランスに着目し,データ量の増加に伴うオーバーフィットの可能性を強調した。
また,様々なグラフタスクにおけるモデルの推論能力の伝達可能性についても検討し,モデルの適応性と実用的応用可能性を示す。
我々の調査は、グラフ推論と問題解決に特化したLSMを開発する上で、新しい青写真と貴重な洞察を提供する。
関連論文リスト
- A Hierarchical Language Model For Interpretable Graph Reasoning [47.460255447561906]
ノード中心の局所情報と相互作用中心のグローバル構造を捉えるために2ブロックアーキテクチャを用いる階層型グラフ言語モデル(HLM-G)を導入する。
提案手法は,大規模グラフ処理における計算コストを削減しつつ,高い効率性,効率性,ロバスト性で様々なグラフクエリに対処することを可能にする。
多様なグラフ推論およびノード,リンク,グラフレベルの実世界のタスクに対する総合的な評価は,本手法の優位性を強調している。
論文 参考訳(メタデータ) (2024-10-29T00:28:02Z) - GCoder: Improving Large Language Model for Generalized Graph Problem Solving [38.9131866084555]
大規模言語モデル(LLM)は強力な推論能力を示しており、グラフ計算のような複雑なタスクに適している。
本稿では,一般化グラフ問題における問題解決の強化を目的とした,コードベースのLLMであるGCoderを紹介する。
本手法では,多種多様なグラフ形式とアルゴリズムを特徴とする広範囲なトレーニングデータセットであるGraphWildを構築する。
論文 参考訳(メタデータ) (2024-10-24T18:40:36Z) - Scalable and Accurate Graph Reasoning with LLM-based Multi-Agents [27.4884498301785]
GraphAgent-Reasonerは、明示的で正確なグラフ推論のための微調整不要なフレームワークである。
分散グラフ計算理論にインスパイアされた我々のフレームワークは、グラフ問題を複数のエージェント間で分散される小さなノード中心のタスクに分解する。
本フレームワークは,Webページ重要度分析などの実世界のグラフ推論アプリケーションを扱う能力を示す。
論文 参考訳(メタデータ) (2024-10-07T15:34:14Z) - Can Large Language Models Analyze Graphs like Professionals? A Benchmark, Datasets and Models [90.98855064914379]
グラフを処理するために,大規模言語モデル(LLM)のベンチマークであるProGraphを導入する。
その結果,現在のLCMの性能は不満足であり,最高のモデルでは36%の精度しか達成できないことがわかった。
本研究では,6つの広く使用されているグラフライブラリに基づいて,クローリングされたドキュメントと自動生成コードを含むLLM4Graphデータセットを提案する。
論文 参考訳(メタデータ) (2024-09-29T11:38:45Z) - InstructGraph: Boosting Large Language Models via Graph-centric
Instruction Tuning and Preference Alignment [30.136514352238795]
InstructGraphは、グラフ推論と生成の能力を備えた大規模な言語モデルを強化するフレームワークである。
InstructGraph は GPT-4 と LLaMA2 を 13% 以上,LLaMA2 は 38% 以上向上できることを示す。
論文 参考訳(メタデータ) (2024-02-13T20:47:17Z) - When Graph Data Meets Multimodal: A New Paradigm for Graph Understanding
and Reasoning [54.84870836443311]
本稿では,画像エンコーディングとマルチモーダル技術を統合することで,グラフデータの理解と推論を行う新しいパラダイムを提案する。
このアプローチは, GPT-4Vの高度な機能を利用して, 命令応答形式によるグラフデータの理解を可能にする。
研究は、このパラダイムを様々なグラフタイプで評価し、特に中国のOCRパフォーマンスと複雑な推論タスクにおいて、モデルの強みと弱みを強調した。
論文 参考訳(メタデータ) (2023-12-16T08:14:11Z) - GraphLLM: Boosting Graph Reasoning Ability of Large Language Model [7.218768686958888]
GraphLLMは、グラフ学習モデルと大規模言語モデルを統合する、先駆的なエンドツーエンドアプローチである。
4つの基本グラフ推論タスクにおける経験的評価により,GraphLLMの有効性が検証された。
その結果、54.44%の精度が向上し、96.45%の文脈が短縮された。
論文 参考訳(メタデータ) (2023-10-09T16:42:00Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
まず,グラフデータ拡張のための分類法を提案し,その拡張情報モダリティに基づいて関連研究を分類し,構造化されたレビューを提供する。
DGLにおける2つの課題(すなわち、最適グラフ学習と低リソースグラフ学習)に焦点を当て、グラフデータ拡張に基づく既存の学習パラダイムについて議論し、レビューする。
論文 参考訳(メタデータ) (2022-02-16T18:30:33Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
グラフ組み込み数ショット学習に関する包括的な研究を紹介します。
本稿では,ラベル間のグラフ情報の組み込みによる影響をより深く理解できるグラフ正規化手法を提案する。
提案手法は,Mini-ImageNetで最大2%,ImageNet-FSで6.7%の性能向上を実現する。
論文 参考訳(メタデータ) (2021-02-14T05:28:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。