論文の概要: A Hierarchical Language Model For Interpretable Graph Reasoning
- arxiv url: http://arxiv.org/abs/2410.22372v1
- Date: Tue, 29 Oct 2024 00:28:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:28:36.724003
- Title: A Hierarchical Language Model For Interpretable Graph Reasoning
- Title(参考訳): グラフ推論のための階層型言語モデル
- Authors: Sambhav Khurana, Xiner Li, Shurui Gui, Shuiwang Ji,
- Abstract要約: ノード中心の局所情報と相互作用中心のグローバル構造を捉えるために2ブロックアーキテクチャを用いる階層型グラフ言語モデル(HLM-G)を導入する。
提案手法は,大規模グラフ処理における計算コストを削減しつつ,高い効率性,効率性,ロバスト性で様々なグラフクエリに対処することを可能にする。
多様なグラフ推論およびノード,リンク,グラフレベルの実世界のタスクに対する総合的な評価は,本手法の優位性を強調している。
- 参考スコア(独自算出の注目度): 47.460255447561906
- License:
- Abstract: Large language models (LLMs) are being increasingly explored for graph tasks. Despite their remarkable success in text-based tasks, LLMs' capabilities in understanding explicit graph structures remain limited, particularly with large graphs. In this work, we introduce Hierarchical Language Model for Graph (HLM-G), which employs a two-block architecture to capture node-centric local information and interaction-centric global structure, effectively enhancing graph structure understanding abilities. The proposed scheme allows LLMs to address various graph queries with high efficacy, efficiency, and robustness, while reducing computational costs on large-scale graph tasks. Furthermore, we demonstrate the interpretability of our model using intrinsic attention weights and established explainers. Comprehensive evaluations across diverse graph reasoning and real-world tasks of node, link, and graph-levels highlight the superiority of our method, marking a significant advancement in the application of LLMs to graph understanding.
- Abstract(参考訳): 大きな言語モデル(LLM)は、グラフタスクのためにますます研究されている。
テキストベースのタスクで顕著に成功したにもかかわらず、明示的なグラフ構造を理解するLLMの能力は、特に大きなグラフでは限定的のままである。
本研究では、ノード中心の局所情報と相互作用中心のグローバル構造を捕捉する2ブロックアーキテクチャを用いて、グラフ構造理解能力を効果的に強化する階層型グラフ言語モデル(HLM-G)を提案する。
提案手法は,大規模グラフ処理における計算コストを削減しつつ,高い効率性,効率性,ロバスト性で様々なグラフクエリに対処することを可能にする。
さらに,本モデルの本質的な注意重みを用いた解釈可能性を示す。
様々なグラフ推論およびノード,リンク,グラフレベルの実世界のタスクに対する包括的評価は,我々の手法の優位性を強調し,LLMのグラフ理解への応用における顕著な進歩を示している。
関連論文リスト
- NT-LLM: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models [26.739650151993928]
グラフは、現実世界のシナリオにおける関係を表現するための基本的なデータ構造である。
グラフ関連のタスクにLLM(Large Language Models)を適用することは、大きな課題となる。
我々は,グラフ構造を効率的にエンコードする新しいフレームワークNT-LLM(Node Tokenizer for Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-10-14T17:21:57Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
この研究は、グラフパターンタスクにおける大規模言語モデルの能力を評価するためのベンチマークを導入する。
我々は,LLMが用語的記述と位相的記述の両方に基づいて,グラフパターンを理解できるかどうかを評価するベンチマークを開発した。
私たちのベンチマークでは、合成データセットと実際のデータセットの両方と、11のタスクと7のモデルで構成されています。
論文 参考訳(メタデータ) (2024-10-04T04:48:33Z) - GraphInsight: Unlocking Insights in Large Language Models for Graph Structure Understanding [17.724492441325165]
大規模言語モデル(LLM)は、グラフ記述シーケンスのプロンプトを通じてグラフィカルな構造情報を理解するのに苦労する。
マクロおよびマイクロレベルのグラフィカル情報に対するLLMの理解を改善するための新しいフレームワークであるGraphInsightを提案する。
論文 参考訳(メタデータ) (2024-09-05T05:34:16Z) - Revisiting the Graph Reasoning Ability of Large Language Models: Case Studies in Translation, Connectivity and Shortest Path [53.71787069694794]
大規模言語モデル(LLM)のグラフ推論能力に着目する。
グラフ記述変換,グラフ接続,最短パス問題という3つの基本グラフタスクにおけるLLMの能力を再考する。
この結果から,LLMはテキスト記述によるグラフ構造理解に失敗し,これらの基本課題に対して様々な性能を示すことが可能であることが示唆された。
論文 参考訳(メタデータ) (2024-08-18T16:26:39Z) - Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
言語エージェントにおけるタスクプランニングは、大規模言語モデル(LLM)の開発とともに重要な研究トピックとして浮上している。
本稿では,課題計画のためのグラフ学習に基づく手法について検討する。
我々のグラフ学習への関心は、注意のバイアスと自己回帰的損失が、グラフ上の意思決定を効果的にナビゲートするLLMの能力を妨げているという理論的な発見に起因している。
論文 参考訳(メタデータ) (2024-05-29T14:26:24Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
Graph-awareを導入します。
GPEFT - グラフ表現学習のための新しい手法。
グラフニューラルネットワーク(GNN)を用いて、隣接するノードからグラフプロンプトに構造情報をエンコードする。
我々は8つの異なるテキストリッチグラフで実施した総合的な実験を通じて,リンク予測評価において hit@1 と Mean Reciprocal Rank (MRR) の平均 2% の改善を観察し,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-04-28T18:36:59Z) - MuseGraph: Graph-oriented Instruction Tuning of Large Language Models
for Generic Graph Mining [41.19687587548107]
グラフニューラルネットワーク(GNN)は、異なるグラフタスクやデータセットに適用されるたびに、再トレーニングされる必要がある。
GNNとLarge Language Models(LLM)の強みをシームレスに統合する新しいフレームワークMusteGraphを提案する。
実験結果から,異なるグラフタスクの大幅な改善が示された。
論文 参考訳(メタデータ) (2024-03-02T09:27:32Z) - Disentangled Representation Learning with Large Language Models for
Text-Attributed Graphs [57.052160123387104]
本稿では,TAGに対するLLMの推論と予測能力を向上させることができるDGTLモデルを提案する。
提案するDGTLモデルでは, グラフ構造情報をGNN層に組み込む。
実験により,提案したDGTLモデルにより,最先端のベースラインよりも優れた性能,あるいは同等の性能が得られることを示した。
論文 参考訳(メタデータ) (2023-10-27T14:00:04Z) - GraphLLM: Boosting Graph Reasoning Ability of Large Language Model [7.218768686958888]
GraphLLMは、グラフ学習モデルと大規模言語モデルを統合する、先駆的なエンドツーエンドアプローチである。
4つの基本グラフ推論タスクにおける経験的評価により,GraphLLMの有効性が検証された。
その結果、54.44%の精度が向上し、96.45%の文脈が短縮された。
論文 参考訳(メタデータ) (2023-10-09T16:42:00Z) - GPT4Graph: Can Large Language Models Understand Graph Structured Data ?
An Empirical Evaluation and Benchmarking [17.7473474499538]
ChatGPTのような大規模言語モデルは、人工知能にとって欠かせないものとなっている。
本研究では,グラフデータの解釈において,LLMの精度を評価するための調査を行う。
この知見は,言語モデルとグラフ理解のギャップを埋めるための貴重な洞察に寄与する。
論文 参考訳(メタデータ) (2023-05-24T11:53:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。