LSTP: Language-guided Spatial-Temporal Prompt Learning for Long-form
Video-Text Understanding
- URL: http://arxiv.org/abs/2402.16050v1
- Date: Sun, 25 Feb 2024 10:27:46 GMT
- Title: LSTP: Language-guided Spatial-Temporal Prompt Learning for Long-form
Video-Text Understanding
- Authors: Yuxuan Wang, Yueqian Wang, Pengfei Wu, Jianxin Liang, Dongyan Zhao,
Zilong Zheng
- Abstract summary: We introduce a novel approach called Language-guided Spatial-Temporal Prompt Learning (LSTP)
This approach features two key components: a Temporal Prompt Sampler (TPS) with optical flow prior that leverages temporal information to efficiently extract relevant video content, and a Spatial Prompt solver (SPS) that adeptly captures the intricate spatial relationships between visual and textual elements.
By harmonizing TPS and SPS with a cohesive training strategy, our framework significantly enhances computational efficiency, temporal understanding, and spatial-temporal alignment.
- Score: 48.83009641950664
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite progress in video-language modeling, the computational challenge of
interpreting long-form videos in response to task-specific linguistic queries
persists, largely due to the complexity of high-dimensional video data and the
misalignment between language and visual cues over space and time. To tackle
this issue, we introduce a novel approach called Language-guided
Spatial-Temporal Prompt Learning (LSTP). This approach features two key
components: a Temporal Prompt Sampler (TPS) with optical flow prior that
leverages temporal information to efficiently extract relevant video content,
and a Spatial Prompt Solver (SPS) that adeptly captures the intricate spatial
relationships between visual and textual elements. By harmonizing TPS and SPS
with a cohesive training strategy, our framework significantly enhances
computational efficiency, temporal understanding, and spatial-temporal
alignment. Empirical evaluations across two challenging tasks--video question
answering and temporal question grounding in videos--using a variety of
video-language pretrainings (VLPs) and large language models (LLMs) demonstrate
the superior performance, speed, and versatility of our proposed LSTP paradigm.
Related papers
- TSPO: Temporal Sampling Policy Optimization for Long-form Video Language Understanding [26.463523465270097]
Multi-language Large Language Models (MLLMs) have demonstrated significant progress in vision-based tasks, yet they still face challenges when processing long-duration video inputs.<n>We propose Temporal Policy Sampling Optimization (TSPO), advancing MLLMs' long-form video-language understanding via reinforcement learning.<n>Our TSPO achieves state-of-the-art performance across multiple long video understanding benchmarks, and shows transferable ability across different cutting-edge Video-MLLMs.
arXiv Detail & Related papers (2025-08-06T12:03:36Z) - MUSEG: Reinforcing Video Temporal Understanding via Timestamp-Aware Multi-Segment Grounding [55.32878803528196]
Video temporal understanding is crucial for multimodal large language models (MLLMs) to reason over events in videos.<n>We propose MUSEG, a novel RL-based method that enhances temporal understanding by introducing timestamp-aware multi-segment grounding.<n>To facilitate effective learning, we design a customized RL training recipe with phased rewards that progressively guides the model toward temporally grounded reasoning.
arXiv Detail & Related papers (2025-05-27T04:50:07Z) - LLM-PS: Empowering Large Language Models for Time Series Forecasting with Temporal Patterns and Semantics [56.99021951927683]
Time Series Forecasting (TSF) is critical in many real-world domains like financial planning and health monitoring.
Existing Large Language Models (LLMs) usually perform suboptimally because they neglect the inherent characteristics of time series data.
We propose LLM-PS to empower the LLM for TSF by learning the fundamental textitPatterns and meaningful textitSemantics from time series data.
arXiv Detail & Related papers (2025-03-12T11:45:11Z) - Token-Efficient Long Video Understanding for Multimodal LLMs [101.70681093383365]
STORM is a novel architecture incorporating a dedicated temporal encoder between the image encoder and the Video-LLMs.
We show that STORM achieves state-of-the-art results across various long video understanding benchmarks.
arXiv Detail & Related papers (2025-03-06T06:17:38Z) - Small but Mighty: Enhancing Time Series Forecasting with Lightweight LLMs [11.1036247482657]
We present SMETimes, the first systematic investigation of sub-3B parameter SLMs for efficient and accurate time series forecasting.
Our approach centers on three key innovations: A statistically-enhanced prompting mechanism that bridges numerical time series with textual semantics through statistical features; A adaptive fusion embedding architecture that aligns temporal patterns with language model token spaces through learnable parameters.
arXiv Detail & Related papers (2025-03-05T15:27:36Z) - InternVideo2.5: Empowering Video MLLMs with Long and Rich Context Modeling [56.130911402831906]
This paper aims to improve the performance of video large language models (LM) via long and rich context (LRC) modeling.
We develop a new version of InternVideo2.5 with focus on enhancing the original MLLMs' ability to perceive fine-grained details in videos.
Experimental results demonstrate this unique designML LRC greatly improves the results of video MLLM in mainstream understanding benchmarks.
arXiv Detail & Related papers (2025-01-21T18:59:00Z) - QUART-Online: Latency-Free Large Multimodal Language Model for Quadruped Robot Learning [35.11412101089823]
This paper addresses the inherent inference latency challenges associated with deploying multimodal large language models (MLLM) in quadruped vision-language-action tasks.
We introduce a novel latency-free quadruped MLLM model, dubbed QUART-Online, designed to enhance inference efficiency without degrading the performance of the language foundation model.
Experimental results demonstrate that QUART-Online operates in tandem with the existing MLLM system, achieving real-time inference in sync with the underlying controller frequency.
arXiv Detail & Related papers (2024-12-20T05:17:06Z) - Efficient Transfer Learning for Video-language Foundation Models [13.166348605993292]
We propose a simple yet effective Multi-modal Spatio-supervised (MSTA) to improve the alignment between representations in the text and vision branches.
We evaluate the effectiveness of our approach across four tasks: zero-shot transfer, few-shot learning, base-to-valiant, and fully-language learning.
arXiv Detail & Related papers (2024-11-18T01:25:58Z) - LongVU: Spatiotemporal Adaptive Compression for Long Video-Language Understanding [65.46303012350207]
LongVU is an adaptive compression mechanism that reduces the number of video tokens while preserving visual details of long videos.
We leverage DINOv2 features to remove redundant frames that exhibit high similarity.
We perform spatial token reduction across frames based on their temporal dependencies.
arXiv Detail & Related papers (2024-10-22T21:21:37Z) - Free Video-LLM: Prompt-guided Visual Perception for Efficient Training-free Video LLMs [56.040198387038025]
We present a novel prompt-guided visual perception framework (abbreviated as Free Video-LLM) for efficient inference of training-free video LLMs.
Our method effectively reduces the number of visual tokens while maintaining high performance across multiple video question-answering benchmarks.
arXiv Detail & Related papers (2024-10-14T12:35:12Z) - SWIFT: On-the-Fly Self-Speculative Decoding for LLM Inference Acceleration [10.970637831760136]
Speculative decoding (SD) has emerged as a widely used paradigm to accelerate the inference of large language models (LLMs)
We introduce SWIFT, an on-the-fly self-speculative decoding algorithm that adaptively selects intermediate layers of LLMs to skip during inference.
We show that SWIFT can achieve over a 1.3x-1.6x speedup while preserving the original distribution of the generated text.
arXiv Detail & Related papers (2024-10-09T14:15:30Z) - The Surprising Effectiveness of Multimodal Large Language Models for Video Moment Retrieval [36.516226519328015]
Video-language tasks necessitate spatial and temporal comprehension and require significant compute.
This work demonstrates the surprising effectiveness of leveraging image-text pretrained MLLMs for moment retrieval.
We achieve a new state-of-the-art in moment retrieval on the widely used benchmarks Charades-STA, QVHighlights, and ActivityNet Captions.
arXiv Detail & Related papers (2024-06-26T06:59:09Z) - ST-LLM: Large Language Models Are Effective Temporal Learners [58.79456373423189]
Large Language Models (LLMs) have showcased impressive capabilities in text comprehension and generation.
How to effectively encode and understand videos in video-based dialogue systems remains to be solved.
We propose ST-LLM, an effective video-LLM baseline with spatial-temporal sequence modeling inside LLM.
arXiv Detail & Related papers (2024-03-30T10:11:26Z) - InfMLLM: A Unified Framework for Visual-Language Tasks [44.29407348046122]
multimodal large language models (MLLMs) have attracted growing interest.
This work delves into enabling LLMs to tackle more vision-language-related tasks.
InfMLLM achieves either state-of-the-art (SOTA) performance or performance comparable to recent MLLMs.
arXiv Detail & Related papers (2023-11-12T09:58:16Z) - CLEX: Continuous Length Extrapolation for Large Language Models [68.43814043853347]
We propose Continuous Length EXtrapolation (CLEX) for Large Language Models (LLMs)
CLEX extends the context window to over 4x or almost 8x training length, with no deterioration in performance.
Our model trained on a 4k length exhibits competitive performance against state-of-the-art open-source models trained on context lengths up to 32k.
arXiv Detail & Related papers (2023-10-25T08:13:02Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUG is a new vision-language foundation model for both cross-modal understanding and generation.
It achieves state-of-the-art results on a wide range of vision-language downstream tasks, such as image captioning, image-text retrieval, visual grounding and visual question answering.
arXiv Detail & Related papers (2022-05-24T11:52:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.