QUART-Online: Latency-Free Large Multimodal Language Model for Quadruped Robot Learning
- URL: http://arxiv.org/abs/2412.15576v4
- Date: Thu, 24 Apr 2025 08:00:36 GMT
- Title: QUART-Online: Latency-Free Large Multimodal Language Model for Quadruped Robot Learning
- Authors: Xinyang Tong, Pengxiang Ding, Yiguo Fan, Donglin Wang, Wenjie Zhang, Can Cui, Mingyang Sun, Han Zhao, Hongyin Zhang, Yonghao Dang, Siteng Huang, Shangke Lyu,
- Abstract summary: This paper addresses the inherent inference latency challenges associated with deploying multimodal large language models (MLLM) in quadruped vision-language-action tasks.<n>We introduce a novel latency-free quadruped MLLM model, dubbed QUART-Online, designed to enhance inference efficiency without degrading the performance of the language foundation model.<n> Experimental results demonstrate that QUART-Online operates in tandem with the existing MLLM system, achieving real-time inference in sync with the underlying controller frequency.
- Score: 35.11412101089823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the inherent inference latency challenges associated with deploying multimodal large language models (MLLM) in quadruped vision-language-action (QUAR-VLA) tasks. Our investigation reveals that conventional parameter reduction techniques ultimately impair the performance of the language foundation model during the action instruction tuning phase, making them unsuitable for this purpose. We introduce a novel latency-free quadruped MLLM model, dubbed QUART-Online, designed to enhance inference efficiency without degrading the performance of the language foundation model. By incorporating Action Chunk Discretization (ACD), we compress the original action representation space, mapping continuous action values onto a smaller set of discrete representative vectors while preserving critical information. Subsequently, we fine-tune the MLLM to integrate vision, language, and compressed actions into a unified semantic space. Experimental results demonstrate that QUART-Online operates in tandem with the existing MLLM system, achieving real-time inference in sync with the underlying controller frequency, significantly boosting the success rate across various tasks by 65%. Our project page is https://quart-online.github.io.
Related papers
- Liquid: Language Models are Scalable and Unified Multi-modal Generators [112.71734051183726]
Liquid is an auto-regressive generation paradigm that seamlessly integrates visual comprehension and generation.
Unlike previous multimodal large language model (MLLM), Liquid achieves this integration using a single large language model.
For the first time, Liquid uncovers a scaling law that performance drop unavoidably brought by the unified training of visual and language tasks.
arXiv Detail & Related papers (2024-12-05T16:48:16Z) - Can MLLMs Guide Weakly-Supervised Temporal Action Localization Tasks? [6.7065734065794835]
We introduce a novel learning paradigm termed MLLM4WTAL.
It harnesses the potential of MLLM to offer temporal action key semantics and complete semantic priors.
It achieves this by integrating two distinct modules: Key Semantic Matching (KSM) and Complete Semantic Reconstruction (CSR)
arXiv Detail & Related papers (2024-11-13T09:37:24Z) - LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [70.19607283302712]
We propose a novel framework to transfer knowledge from l-MLLM to s-MLLM.
Specifically, we introduce Multimodal Distillation (MDist) to minimize the divergence between the visual-textual output distributions of l-MLLM and s-MLLM.
We also propose a three-stage training scheme to fully exploit the potential of s-MLLM.
arXiv Detail & Related papers (2024-10-21T17:41:28Z) - Advancing Multimodal Large Language Models with Quantization-Aware Scale Learning for Efficient Adaptation [70.22782550540714]
Quantization-aware Scale LeArning method based on multimodal Warmup, termed QSLAW.
We introduce a Quantization-aware Scale LeArning method based on multimodal Warmup, termed QSLAW.
arXiv Detail & Related papers (2024-08-07T12:42:09Z) - HyperLLaVA: Dynamic Visual and Language Expert Tuning for Multimodal Large Language Models [70.25499865569353]
We introduce HyperLLaVA, which involves adaptive tuning of the projector and LLM parameters, in conjunction with a dynamic visual expert and language expert.
Our solution significantly surpasses LLaVA on existing MLLM benchmarks, including MME, MMBench, SEED-Bench, and LLaVA-Bench.
arXiv Detail & Related papers (2024-03-20T09:42:43Z) - Efficient Temporal Extrapolation of Multimodal Large Language Models with Temporal Grounding Bridge [47.750073410717604]
We introduce Temporal Grounding Bridge (TGB), a novel framework that bootstraps MLLMs with advanced temporal grounding capabilities.
We validate TGB across seven video benchmarks and demonstrate substantial performance improvements compared with prior MLLMs.
Our model, initially trained on sequences of four frames, effectively handles sequences up to 16 longer without sacrificing performance.
arXiv Detail & Related papers (2024-02-25T10:27:46Z) - Octavius: Mitigating Task Interference in MLLMs via LoRA-MoE [83.00018517368973]
Large Language Models (LLMs) can extend their zero-shot capabilities to multimodal learning through instruction tuning.
negative conflicts and interference may have a worse impact on performance.
We combine the well-known Mixture-of-Experts (MoE) and one of the representative PEFT techniques, i.e., LoRA, designing a novel LLM-based decoder, called LoRA-MoE, for multimodal learning.
arXiv Detail & Related papers (2023-11-05T15:48:29Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
We investigate the possibility of applying Large Language Models to SimulMT tasks.
We conducted experiments using the textttLlama2-7b-chat model on nine different languages from the MUST-C dataset.
The results show that LLM outperforms dedicated MT models in terms of BLEU and LAAL metrics.
arXiv Detail & Related papers (2023-09-13T04:06:47Z) - Scaling Sentence Embeddings with Large Language Models [43.19994568210206]
In this work, we propose an in-context learning-based method aimed at improving sentence embeddings performance.
Our approach involves adapting the previous prompt-based representation method for autoregressive models.
By scaling model size, we find scaling to more than tens of billion parameters harms the performance on semantic textual similarity tasks.
arXiv Detail & Related papers (2023-07-31T13:26:03Z) - PaLM: Scaling Language Modeling with Pathways [180.69584031908113]
We trained a 540-billion parameter, densely activated, Transformer language model, which we call Pathways Language Model PaLM.
We trained PaLM on 6144 TPU v4 chips using Pathways, a new ML system which enables highly efficient training across multiple TPU Pods.
We demonstrate continued benefits of scaling by achieving state-of-the-art few-shot learning results on hundreds of language understanding and generation benchmarks.
arXiv Detail & Related papers (2022-04-05T16:11:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.