On the Feasibility of Deep Learning Classification from Raw Signal Data in Radiology, Ultrasonography and Electrophysiology
- URL: http://arxiv.org/abs/2402.16165v3
- Date: Sun, 14 Apr 2024 14:56:26 GMT
- Title: On the Feasibility of Deep Learning Classification from Raw Signal Data in Radiology, Ultrasonography and Electrophysiology
- Authors: Szilard Enyedi,
- Abstract summary: The paper presents the main current applications of deep learning in radiography, ultrasonography, and electrophysiology.
It discusses whether the proposed neural network training directly on raw signals is feasible.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical imaging is a very useful tool in healthcare, various technologies being employed to non-invasively peek inside the human body. Deep learning with neural networks in radiology was welcome - albeit cautiously - by the radiologist community. Most of the currently deployed or researched deep learning solutions are applied on already generated images of medical scans, use the neural networks to aid in the generation of such images, or use them for identifying specific substance markers in spectrographs. This paper's author posits that if the neural networks were trained directly on the raw signals from the scanning machines, they would gain access to more nuanced information than from the already processed images, hence the training - and later, the inferences - would become more accurate. The paper presents the main current applications of deep learning in radiography, ultrasonography, and electrophysiology, and discusses whether the proposed neural network training directly on raw signals is feasible.
Related papers
- Object Detection for Automated Coronary Artery Using Deep Learning [0.0]
In our paper, we utilize the object detection method on X-ray angiography images to precisely identify the location of coronary artery stenosis.
This model enables automatic and real-time detection of stenosis locations, assisting in the crucial and sensitive decision-making process.
arXiv Detail & Related papers (2023-12-19T13:14:52Z) - Case Studies on X-Ray Imaging, MRI and Nuclear Imaging [0.0]
We will focus on how AI-based approaches, particularly the use of Convolutional Neural Networks (CNN), can assist in disease detection through medical imaging technology.
CNN is a commonly used approach for image analysis due to its ability to extract features from raw input images.
arXiv Detail & Related papers (2023-06-03T09:05:35Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Follow My Eye: Using Gaze to Supervise Computer-Aided Diagnosis [54.60796004113496]
We demonstrate that the eye movement of radiologists reading medical images can be a new form of supervision to train the DNN-based computer-aided diagnosis (CAD) system.
We record the tracks of the radiologists' gaze when they are reading images.
The gaze information is processed and then used to supervise the DNN's attention via an Attention Consistency module.
arXiv Detail & Related papers (2022-04-06T08:31:05Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Voice-assisted Image Labelling for Endoscopic Ultrasound Classification
using Neural Networks [48.732863591145964]
We propose a multi-modal convolutional neural network architecture that labels endoscopic ultrasound (EUS) images from raw verbal comments provided by a clinician during the procedure.
Our results show a prediction accuracy of 76% at image level on a dataset with 5 different labels.
arXiv Detail & Related papers (2021-10-12T21:22:24Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
Beamforming, the process of mapping received ultrasound echoes to the spatial image domain, lies at the heart of the ultrasound image formation chain.
Modern ultrasound imaging leans heavily on innovations in powerful digital receive channel processing.
Deep learning methods can play a compelling role in the digital beamforming pipeline.
arXiv Detail & Related papers (2021-09-23T15:15:21Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
We introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification.
Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding.
arXiv Detail & Related papers (2020-09-27T12:30:30Z) - Deep learning approaches for neural decoding: from CNNs to LSTMs and
spikes to fMRI [2.0178765779788495]
Decoding behavior, perception, or cognitive state directly from neural signals has applications in brain-computer interface research.
In the last decade, deep learning has become the state-of-the-art method in many machine learning tasks.
Deep learning has been shown to be a useful tool for improving the accuracy and flexibility of neural decoding across a wide range of tasks.
arXiv Detail & Related papers (2020-05-19T18:10:35Z) - Comparing Different Deep Learning Architectures for Classification of
Chest Radiographs [0.0]
Most models to classify chest radiographs are derived from deep neural networks, trained on large image-datasets.
We show that smaller networks have the potential to classify chest radiographs as precisely as deeper neural networks.
arXiv Detail & Related papers (2020-02-20T19:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.