論文の概要: Honeybee: Decentralized Peer Sampling with Verifiable Random Walks for Blockchain Data Sharding
- arxiv url: http://arxiv.org/abs/2402.16201v1
- Date: Sun, 25 Feb 2024 21:29:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 07:18:43.973933
- Title: Honeybee: Decentralized Peer Sampling with Verifiable Random Walks for Blockchain Data Sharding
- Title(参考訳): Honeybee: ブロックチェーンデータシャーディングのための検証可能なランダムウォークを備えた分散ピアサンプリング
- Authors: Yunqi Zhang, Shaileshh Bojja Venkatakrishnan,
- Abstract要約: We present Honeybee, a decentralized algorithm for sample node that using verible random walk。
ハネビーは、多くのビザンツのノードが存在しても攻撃に対して安全である。
提案アルゴリズムは全ノードと軽ノードの両方においてDAS関数に影響を及ぼす。
- 参考スコア(独自算出の注目度): 6.120657470247715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data sharding - in which block data is sharded without sharding compute - is at the present the favored approach for scaling Ethereum. A key challenge toward implementing data sharding is verifying whether the entirety of a block's data is available in the network (across its shards). A central technique proposed to conduct this verification uses erasure coded blocks and is called data availability sampling (DAS). While the high-level protocol details of DAS has been well discussed in the community, discussions around how such a protocol will be implemented at the peer-to-peer layer are lacking. We identify random sampling of nodes as a fundamental primitive necessary to carry out DAS and present Honeybee, a decentralized algorithm for sampling node that uses verifiable random walks. Honeybee is secure against attacks even in the presence of a large number of Byzantine nodes (e.g., 50% of the network). We evaluate Honeybee through experiments and show that the quality of sampling achieved by Honeybee is significantly better compared to the state-of-the-art. Our proposed algorithm has implications for DAS functions in both full nodes and light nodes.
- Abstract(参考訳): データシャーディング – ブロックデータがシャーディング計算なしでシャーディングされる – は,Ethereumのスケールアップに好都合なアプローチである。
データシャーディングを実装する上で重要な課題は、ブロックのデータ全体がネットワーク(シャード全体)で利用可能かどうかを検証することだ。
この検証を行うために提案された中心的な手法は、消去符号化ブロックを使用しており、データアベイラビリティサンプリング(DAS)と呼ばれる。
DASの高レベルプロトコルの詳細はコミュニティでよく議論されているが、このようなプロトコルがピアツーピア層でどのように実装されるかは議論されていない。
本研究では,DASを行うために必要な基本的プリミティブとしてノードのランダムサンプリングと,検証可能なランダムウォークを用いたサンプリングノードの分散アルゴリズムであるHoneybeeを同定する。
Honeybeeは、多数のビザンチンノード(ネットワークの50%など)が存在する場合でも、攻撃に対して安全である。
我々はハチを実験により評価し、ハチによる採集の質が最先端技術と比較して著しく良いことを示した。
提案アルゴリズムは全ノードと軽ノードの両方においてDAS関数に影響を及ぼす。
関連論文リスト
- Scalable Zero-Knowledge Proofs for Verifying Cryptographic Hashing in Blockchain Applications [16.72979347045808]
ゼロ知識証明(ZKP)は、現代のブロックチェーンシステムのスケーラビリティ問題に対処するための、有望なソリューションとして登場した。
本研究では,暗号ハッシュの計算完全性を保証するため,ZKPの生成と検証を行う手法を提案する。
論文 参考訳(メタデータ) (2024-07-03T21:19:01Z) - Larger-scale Nakamoto-style Blockchains Don't Necessarily Offer Better Security [1.2644625435032817]
中本方式のコンセンサスプロトコルの研究は、ネットワーク遅延がこれらのプロトコルのセキュリティを低下させることを示した。
これはブロックチェーンの基盤、すなわち分散化がセキュリティを改善することに矛盾する。
ネットワークスケールがNakamotoスタイルのブロックチェーンのセキュリティにどのように影響するか、詳しく調べる。
論文 参考訳(メタデータ) (2024-04-15T16:09:41Z) - Generalized Hybrid Search and Applications to Blockchain and Hash
Function Security [50.16790546184646]
まず,ハイブリッド量子古典戦略を用いて,様々な探索問題を解くことの難しさについて検討する。
次に、ハイブリッド量子古典探索アルゴリズムを構築し、その成功確率を解析する。
論文 参考訳(メタデータ) (2023-11-07T04:59:02Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - Secure Deep Learning-based Distributed Intelligence on Pocket-sized
Drones [75.80952211739185]
パームサイズのナノドロンはエッジノードの魅力的なクラスであるが、その限られた計算資源は大規模なディープラーニングモデルの実行を妨げている。
エッジフォッグ計算のパラダイムを採用することで、計算の一部をフォグにオフロードすることができるが、フォグノードや通信リンクが信頼できない場合、セキュリティ上の懸念が生じる。
ナノドローン上でランダムなサブネットワークを冗長に実行することにより,霧の計算を検証する分散エッジフォッグ実行方式を提案する。
論文 参考訳(メタデータ) (2023-07-04T08:29:41Z) - Proof-of-work consensus by quantum sampling [0.0]
我々は、ブロックチェーンコンセンサスのための量子Proof-of-Workスキームとして、粗粒ボソンサンプリング(CGBS)と呼ばれる変種を使うことを提案する。
ユーザは、現在のブロック情報に依存する入力状態を使用してボソンサンプリングを行い、そのサンプルをネットワークにコミットする。
正直なサンプルをコミットする坑夫に対する報酬と不正直なサンプルをコミットする坑夫に対する罰とを組み合わせることで、ナッシュ均衡は正直なノードをインセンティブを与える。
論文 参考訳(メタデータ) (2023-05-31T13:58:40Z) - A quantum algorithm for finding collision-inducing disturbance vectors
in SHA-1 [2.963904090194172]
現代の暗号プロトコルは、ユーザ認証やその他のセキュリティ検証のシグネチャとして機能する準ユニクティックな数値を生成するために、洗練されたハッシュ関数に依存している。
セキュリティは、同一の番号にマッチするハッシュテキストを見つけ、いわゆる衝突攻撃を発生させることによって妥協される可能性がある。
本稿では,絡み合った量子状態を利用して,候補外乱ベクトルの同時シード化を行うアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-23T16:01:17Z) - A QUBO formulation for top-$\tau$ eigencentrality nodes [0.0]
本稿では,ネットワークの固有ベクトルから得られるスコアでネットワークのノードの重要度をランク付けする,固有分散性問題の解決の基礎を定めている。
この問題は、量子アーキテクチャの両方で解ける2次非制約バイナリ最適化(QUBO)として再構成される。
その結果、D-Wave と IBM の量子コンピュータ上でのネットワーク内の最高固有中央性ノードを最大$tau$で識別する問題のQUBO定式化のスパースベクトル解によって与えられる多数のネットワークにおいて、与えられた最も重要なノードの数を正確に特定することに焦点を当てた。
論文 参考訳(メタデータ) (2021-05-01T05:35:44Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
作業の証明(英: proof of work、PoW)は、当事者が計算タスクの解決にいくらかの労力を費やしたことを他人に納得させることができる重要な暗号構造である。
本研究では、量子戦略に対してそのようなPoWの連鎖を見つけることの難しさについて検討する。
我々は、PoWs問題の連鎖が、マルチソリューションBernoulliサーチと呼ばれる問題に還元されることを証明し、量子クエリの複雑さを確立する。
論文 参考訳(メタデータ) (2020-12-30T18:03:56Z) - Deep Reinforcement Learning with Label Embedding Reward for Supervised
Image Hashing [85.84690941656528]
深層型ハッシュのための新しい意思決定手法を提案する。
我々はBose-Chaudhuri-Hocquenghem符号で定義された新しいラベル埋め込み報酬を用いて、深いQ-ネットワークを学ぶ。
我々の手法は、様々なコード長で最先端の教師付きハッシュ法より優れています。
論文 参考訳(メタデータ) (2020-08-10T09:17:20Z) - ESPN: Extremely Sparse Pruned Networks [50.436905934791035]
簡単な反復マスク探索法により,非常に深いネットワークの最先端の圧縮を実現することができることを示す。
本アルゴリズムは,シングルショット・ネットワーク・プルーニング法とロッテ・ティケット方式のハイブリッド・アプローチを示す。
論文 参考訳(メタデータ) (2020-06-28T23:09:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。