論文の概要: Secure Deep Learning-based Distributed Intelligence on Pocket-sized
Drones
- arxiv url: http://arxiv.org/abs/2307.01559v1
- Date: Tue, 4 Jul 2023 08:29:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-06 17:48:51.177174
- Title: Secure Deep Learning-based Distributed Intelligence on Pocket-sized
Drones
- Title(参考訳): ポケットサイズのドローン上でセキュアなディープラーニングベースの分散インテリジェンス
- Authors: Elia Cereda and Alessandro Giusti and Daniele Palossi
- Abstract要約: パームサイズのナノドロンはエッジノードの魅力的なクラスであるが、その限られた計算資源は大規模なディープラーニングモデルの実行を妨げている。
エッジフォッグ計算のパラダイムを採用することで、計算の一部をフォグにオフロードすることができるが、フォグノードや通信リンクが信頼できない場合、セキュリティ上の懸念が生じる。
ナノドローン上でランダムなサブネットワークを冗長に実行することにより,霧の計算を検証する分散エッジフォッグ実行方式を提案する。
- 参考スコア(独自算出の注目度): 75.80952211739185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Palm-sized nano-drones are an appealing class of edge nodes, but their
limited computational resources prevent running large deep-learning models
onboard. Adopting an edge-fog computational paradigm, we can offload part of
the computation to the fog; however, this poses security concerns if the fog
node, or the communication link, can not be trusted. To tackle this concern, we
propose a novel distributed edge-fog execution scheme that validates fog
computation by redundantly executing a random subnetwork aboard our nano-drone.
Compared to a State-of-the-Art visual pose estimation network that entirely
runs onboard, a larger network executed in a distributed way improves the $R^2$
score by +0.19; in case of attack, our approach detects it within 2s with 95%
probability.
- Abstract(参考訳): パームサイズのナノドロンはエッジノードの魅力的なクラスであるが、その限られた計算資源は大規模なディープラーニングモデルの実行を妨げている。
エッジフォッグ計算のパラダイムを採用することで、計算の一部をフォグにオフロードすることができるが、フォグノードや通信リンクが信頼できない場合、セキュリティ上の懸念が生じる。
そこで本研究では,ナノドローン上でランダムなサブネットワークを冗長に実行することにより,霧の計算を検証する分散エッジフォッグ実行方式を提案する。
システム上で完全に動作しているState-of-the-Artビジュアルポーズ推定ネットワークと比較して、大規模ネットワークは分散処理によってR^2$スコアを+0.19向上させ、攻撃時には95%の確率で2秒以内で検出する。
関連論文リスト
- Edge-Only Universal Adversarial Attacks in Distributed Learning [49.546479320670464]
本研究では,攻撃者がモデルのエッジ部分のみにアクセスした場合に,ユニバーサルな敵攻撃を発生させる可能性について検討する。
提案手法は, エッジ側の重要な特徴を活用することで, 未知のクラウド部分において, 効果的な誤予測を誘導できることを示唆する。
ImageNetの結果は、未知のクラウド部分に対する強力な攻撃伝達性を示している。
論文 参考訳(メタデータ) (2024-11-15T11:06:24Z) - A Fast Algorithm for Moderating Critical Nodes via Edge Removal [19.130541561303293]
対象ノードの情報集中度を最小限に抑えるために,ネットワークから$k$エッジを除去する問題について検討する。
ランダムウォークに基づくシュア補数近似や高速和推定などの新しい手法を用いて、3つの近似グリードアルゴリズムを提案する。
理論的解析を補完するため、100万以上のノードを持つ合成および実ネットワークに関する包括的な実験を行う。
論文 参考訳(メタデータ) (2023-09-09T13:54:34Z) - Wasserstein distributional robustness of neural networks [9.79503506460041]
ディープニューラルネットワークは敵攻撃(AA)に弱いことが知られている
画像認識タスクでは、元の小さな摂動によって画像が誤分類される可能性がある。
本稿では,Wassersteinの分散ロバスト最適化(DRO)技術を用いて問題を再検討し,新しいコントリビューションを得た。
論文 参考訳(メタデータ) (2023-06-16T13:41:24Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - Sparse and Imperceptible Adversarial Attack via a Homotopy Algorithm [93.80082636284922]
少数の敵対的攻撃は、数ピクセルを摂動するだけでディープ・ネットワーク(DNN)を騙すことができる。
近年の取り組みは、他の等級のl_infty摂動と組み合わせている。
本稿では,空間的・神経的摂動に対処するホモトピーアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-10T20:11:36Z) - Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits [55.740716446995805]
我々は,悪質な目的で展開段階におけるモデルパラメータを修飾する新しい攻撃パラダイムについて検討する。
私たちのゴールは、特定のサンプルをサンプル修正なしでターゲットクラスに誤分類することです。
整数プログラミングにおける最新の手法を利用することで、このBIP問題を連続最適化問題として等価に再構成する。
論文 参考訳(メタデータ) (2021-02-21T03:13:27Z) - Against Membership Inference Attack: Pruning is All You Need [22.13027338667513]
我々は、この重み付け技術が、深層学習ネットワーク(DNN)の会員推論攻撃(MIA)に対する効果を期待する。
そこで本研究では,プライバシの漏洩を防止するサブネットワークが提案されている。
実験の結果,モデル圧縮による攻撃精度は,ベースラインゲームとMin-Maxゲームよりも最大13.6%,10%低いことがわかった。
論文 参考訳(メタデータ) (2020-08-28T02:15:44Z) - ESPN: Extremely Sparse Pruned Networks [50.436905934791035]
簡単な反復マスク探索法により,非常に深いネットワークの最先端の圧縮を実現することができることを示す。
本アルゴリズムは,シングルショット・ネットワーク・プルーニング法とロッテ・ティケット方式のハイブリッド・アプローチを示す。
論文 参考訳(メタデータ) (2020-06-28T23:09:27Z) - Depth-2 Neural Networks Under a Data-Poisoning Attack [2.105564340986074]
本研究では,浅層ニューラルネットワークをレグレッション・セットアップでトレーニングしながら,データ中毒攻撃に対する防御の可能性について検討する。
本研究では,深度2有限幅ニューラルネットワークのクラスに対して教師あり学習を行うことに焦点をあてる。
論文 参考訳(メタデータ) (2020-05-04T17:56:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。