論文の概要: Multi-Bit Distortion-Free Watermarking for Large Language Models
- arxiv url: http://arxiv.org/abs/2402.16578v1
- Date: Mon, 26 Feb 2024 14:01:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-28 20:40:41.343360
- Title: Multi-Bit Distortion-Free Watermarking for Large Language Models
- Title(参考訳): 大規模言語モデルのためのマルチビット歪みなし透かし
- Authors: Massieh Kordi Boroujeny, Ya Jiang, Kai Zeng, Brian Mark
- Abstract要約: 透かしの一部としてメタ情報の複数ビットを埋め込むことにより,既存のゼロビット歪みのない透かし法を拡張した。
また,少ないビット誤り率で透かしから埋め込み情報を抽出する計算効率の良い復号器を開発した。
- 参考スコア(独自算出の注目度): 4.7381853007029475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Methods for watermarking large language models have been proposed that
distinguish AI-generated text from human-generated text by slightly altering
the model output distribution, but they also distort the quality of the text,
exposing the watermark to adversarial detection. More recently, distortion-free
watermarking methods were proposed that require a secret key to detect the
watermark. The prior methods generally embed zero-bit watermarks that do not
provide additional information beyond tagging a text as being AI-generated. We
extend an existing zero-bit distortion-free watermarking method by embedding
multiple bits of meta-information as part of the watermark. We also develop a
computationally efficient decoder that extracts the embedded information from
the watermark with low bit error rate.
- Abstract(参考訳): モデル出力分布をわずかに変えてai生成テキストと人間の生成テキストを区別する大規模な言語モデルのウォーターマーク法が提案されているが、テキストの品質を歪め、ウォーターマークを逆検出にさらしている。
最近では、透かしを検出する秘密鍵を必要とする歪みのない透かし法が提案されている。
以前の方法は一般的に、テキストをAI生成としてタグ付けする以上の情報を提供しないゼロビットの透かしを埋め込む。
透かしの一部としてメタ情報の複数ビットを埋め込むことにより,既存のゼロビット歪みのない透かし法を拡張した。
また,少ないビット誤り率で透かしから埋め込み情報を抽出する計算効率の良い復号器を開発した。
関連論文リスト
- Watermark Smoothing Attacks against Language Models [40.02225709485305]
我々はスムースな攻撃を導入し、既存の透かし手法がテキストの小さな修正に対して堅牢でないことを示す。
我々の攻撃は幅広い透かし技術の基本的限界を明らかにしている。
論文 参考訳(メタデータ) (2024-07-19T11:04:54Z) - Less is More: Sparse Watermarking in LLMs with Enhanced Text Quality [27.592486717044455]
テキストに分散した生成されたトークンの小さなサブセットに透かしを適用することで、このトレードオフを緩和することを目的とした新しいタイプの透かしであるスパース透かしを提案する。
提案手法は,従来の透かし手法よりも高い品質のテキストを生成しつつ,高い検出性を実現することを示す。
論文 参考訳(メタデータ) (2024-07-17T18:52:12Z) - Watermarking Language Models with Error Correcting Codes [41.21656847672627]
本稿では,誤り訂正符号を用いて統計的信号を符号化する透かしフレームワークを提案する。
提案手法は,ロバスト二元符号 (RBC) 透かしと呼ばれ,元の確率分布に比較して歪みは生じない。
私たちの経験的発見は、私たちの透かしは速く、強力で、堅牢であり、最先端のものと好意的に比較していることを示唆しています。
論文 参考訳(メタデータ) (2024-06-12T05:13:09Z) - On the Learnability of Watermarks for Language Models [80.97358663708592]
言語モデルが透かし付きテキストを生成するために直接学習できるかどうかを問う。
本稿では,教師モデルとして振舞う学生モデルを訓練する透かし蒸留法を提案する。
モデルは、高い検出性で透かし付きテキストを生成することができる。
論文 参考訳(メタデータ) (2023-12-07T17:41:44Z) - An Unforgeable Publicly Verifiable Watermark for Large Language Models [84.2805275589553]
現在の透かし検出アルゴリズムは、透かし生成プロセスで使用される秘密鍵を必要としており、公開検出中にセキュリティ違反や偽造の影響を受ける。
両段階で同じキーを使用するのではなく、2つの異なるニューラルネットワークを用いて透かしの生成と検出を行う。
論文 参考訳(メタデータ) (2023-07-30T13:43:27Z) - On the Reliability of Watermarks for Large Language Models [95.87476978352659]
本研究では,人間による書き直し後の透かしテキストの堅牢性,非透かしLDMによる言い換え,あるいはより長い手書き文書への混在性について検討する。
人や機械の言い回しをしても、透かしは検出可能である。
また、大きな文書に埋め込まれた透かし付きテキストの短いスパンに敏感な新しい検出手法についても検討する。
論文 参考訳(メタデータ) (2023-06-07T17:58:48Z) - Tree-Ring Watermarks: Fingerprints for Diffusion Images that are
Invisible and Robust [55.91987293510401]
生成モデルのアウトプットを透かしは、著作権をトレースし、AI生成コンテンツによる潜在的な害を防ぐ重要なテクニックである。
本稿では,拡散モデル出力を頑健にフィンガープリントするTree-Ring Watermarkingという新しい手法を提案する。
私たちの透かしは画像空間に意味的に隠れており、現在デプロイされている透かしよりもはるかに堅牢です。
論文 参考訳(メタデータ) (2023-05-31T17:00:31Z) - Undetectable Watermarks for Language Models [1.347733333991357]
本稿では,言語モデルに対する検出不能な透かしの概念を紹介する。
透かしは秘密鍵の知識でのみ検出できます
一方向関数の存在に基づいて検出不能な透かしを構築する。
論文 参考訳(メタデータ) (2023-05-25T02:57:16Z) - Watermarking Text Generated by Black-Box Language Models [103.52541557216766]
テキスト生成中に透かしを埋め込むことのできるホワイトボックスLCMに対して,透かしに基づく手法が提案されている。
リストを認識した検出アルゴリズムは、透かし付きテキストを識別することができる。
我々はブラックボックス言語モデル利用シナリオのための透かしフレームワークを開発する。
論文 参考訳(メタデータ) (2023-05-14T07:37:33Z) - A Watermark for Large Language Models [84.95327142027183]
本稿では,プロプライエタリな言語モデルのための透かしフレームワークを提案する。
透かしはテキストの品質に無視できない影響で埋め込むことができる。
言語モデルAPIやパラメータにアクセスすることなく、効率的なオープンソースアルゴリズムを使って検出することができる。
論文 参考訳(メタデータ) (2023-01-24T18:52:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。