論文の概要: StructLM: Towards Building Generalist Models for Structured Knowledge
Grounding
- arxiv url: http://arxiv.org/abs/2402.16671v2
- Date: Wed, 28 Feb 2024 14:49:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-29 12:01:29.998936
- Title: StructLM: Towards Building Generalist Models for Structured Knowledge
Grounding
- Title(参考訳): StructLM:構造化知識接地のための汎用モデルの構築に向けて
- Authors: Alex Zhuang, Ge Zhang, Tianyu Zheng, Xinrun Du, Junjie Wang, Weiming
Ren, Stephen W. Huang, Jie Fu, Xiang Yue, Wenhu Chen
- Abstract要約: StructLMは、評価された18のデータセットのうち14のタスク固有のモデルを上回る一連のモデルである。
予測とは対照的に,StructLM-34BはStructLM-7Bよりもわずかに改善されている。
- 参考スコア(独自算出の注目度): 50.73401326337493
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Structured data sources, such as tables, graphs, and databases, are
ubiquitous knowledge sources. Despite the demonstrated capabilities of large
language models (LLMs) on plain text, their proficiency in interpreting and
utilizing structured data remains limited. Our investigation reveals a notable
deficiency in LLMs' ability to process structured data, e.g., ChatGPT lags
behind state-of-the-art (SoTA) model by an average of 35%. To augment the
Structured Knowledge Grounding (SKG) capabilities in LLMs, we have developed a
comprehensive instruction tuning dataset comprising 1.1 million examples.
Utilizing this dataset, we train a series of models, referred to as StructLM,
based on the Code-LLaMA architecture, ranging from 7B to 34B parameters. Our
StructLM series surpasses task-specific models on 14 out of 18 evaluated
datasets and establishes new SoTA achievements on 7 SKG tasks. Furthermore,
StructLM demonstrates exceptional generalization across 6 novel SKG tasks.
Contrary to expectations, we observe that scaling model size offers marginal
benefits, with StructLM-34B showing only slight improvements over StructLM-7B.
This suggests that structured knowledge grounding is still a challenging task
and requires more innovative design to push to a new level.
- Abstract(参考訳): テーブル、グラフ、データベースなどの構造化データソースはユビキタスな知識ソースである。
プレーンテキスト上での大規模言語モデル(LLM)の実証能力にもかかわらず、構造化データの解釈と利用能力は依然として限られている。
我々の研究は、LLMが構造化データを処理する能力に顕著な欠陥があることを明らかにしている。例えば、ChatGPTは最先端(SoTA)モデルに平均35%遅れている。
llmsにおける構造化知識グラウンド(skg)機能を強化するため,111万例からなる包括的命令チューニングデータセットを開発した。
このデータセットを利用して、7Bから34BパラメータのCode-LLaMAアーキテクチャに基づいて、StructLMと呼ばれる一連のモデルをトレーニングする。
我々のStructLMシリーズは、評価された18のデータセットのうち14のタスク固有モデルを超え、7つのSKGタスクに新しいSoTAの成果を確立する。
さらに、StructLMは6つの新しいSKGタスクにまたがる例外的な一般化を示す。
予測とは対照的に,StructLM-34BはStructLM-7Bよりもわずかに改善されている。
これは、構造化知識基盤は依然として困難な課題であり、新しいレベルに進むためにはより革新的な設計が必要であることを示唆している。
関連論文リスト
- Struct-X: Enhancing Large Language Models Reasoning with Structured Data [38.558614152006975]
構造Xは5つの重要なフェーズを通して動作する:read-model-fill-reflect-reason'
構造化データをグラフ埋め込みを用いて位相空間にエンコードする。
行方不明のエンティティ情報を知識検索モジュールで埋める。
最後のフェーズでは、選択したトークンでトポロジネットワークを構築する。
論文 参考訳(メタデータ) (2024-07-17T13:06:25Z) - Learning to Reduce: Towards Improving Performance of Large Language Models on Structured Data [39.29778853025738]
大規模言語モデル(LLM)は、幅広い下流タスクにおいて有能なパフォーマンスを実現している。
本稿では、オン・ポリシー・ラーニングを用いて言語モデルを微調整し、入力された構造化データの縮小版を生成するフレームワークであるLearning to Reduceを提案する。
論文 参考訳(メタデータ) (2024-07-03T01:51:50Z) - LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement [79.31084387589968]
事前訓練された大規模言語モデル(LLM)は、現在、自然言語処理タスクの大部分を解決するための最先端技術である。
LLM2LLMは、教師のLLMを使って小さなシードデータセットを強化するデータ拡張戦略である。
GSM8Kデータセットでは最大24.2%、CaseHOLDでは32.6%、SNIPSでは32.0%、TRECでは52.6%、SST-2では39.8%の改善が達成された。
論文 参考訳(メタデータ) (2024-03-22T08:57:07Z) - LLM Augmented LLMs: Expanding Capabilities through Composition [56.40953749310957]
CALM -- 言語モデルの拡張のための構成 -- は、モデル間の相互アテンションを導入して、表現を構成し、新しい機能を有効にする。
低リソース言語で訓練されたより小さなモデルでPaLM2-Sを増強すると、英語への翻訳のようなタスクで最大13%の改善が達成される。
PaLM2-Sがコード固有モデルで拡張されると、コード生成や説明タスクのベースモデルよりも40%向上する。
論文 参考訳(メタデータ) (2024-01-04T18:53:01Z) - Increasing The Performance of Cognitively Inspired Data-Efficient
Language Models via Implicit Structure Building [6.445605125467575]
階層型文構造に関する教師なし予測をモデルアーキテクチャに組み込んだ言語モデルを訓練する。
StructFormerモデルは、限られた事前学習データに基づいて教師なしの構文誘導でうまく機能することが示されている。
BabyLMチャレンジが提供する39のタスクに対するモデルの評価は、階層的バイアスをアーキテクチャに組み込むモデルの改善を期待できることを示す。
論文 参考訳(メタデータ) (2023-10-31T16:26:36Z) - Struc-Bench: Are Large Language Models Really Good at Generating Complex Structured Data? [49.688233418425995]
Struc-Benchは、大きな言語モデル(LLM)を特徴とする包括的なベンチマークである。
Pスコア(Prompting Score)とHスコア(Heuristical Score)の2つの革新的な指標を提案する。
実験の結果,LLaMA-7Bに構造認識の微調整を適用すると,性能が大幅に向上することがわかった。
論文 参考訳(メタデータ) (2023-09-16T11:31:58Z) - LLM2KB: Constructing Knowledge Bases using instruction tuned context
aware Large Language Models [0.8702432681310401]
本稿では,大規模言語モデルを用いた知識ベース構築システム LLM2KB を提案する。
ISWC 2023で開かれたLM-KBCチャレンジでは,21関係の平均F1スコアが0.6185に達した。
論文 参考訳(メタデータ) (2023-08-25T07:04:16Z) - StructGPT: A General Framework for Large Language Model to Reason over
Structured Data [117.13986738340027]
我々は,構造化データに基づく質問応答タスクの解法として,emphIterative Reading-then-Reasoning(IRR)アプローチを開発した。
提案手法はChatGPTの性能を大幅に向上させ,全データの教師付きベースラインに対して同等のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-05-16T17:45:23Z) - DeepStruct: Pretraining of Language Models for Structure Prediction [64.84144849119554]
テキストから構造を生成するために,タスクに依存しないコーパスの集合上で言語モデルを事前訓練する。
我々の構造事前学習は、モデルが構造タスクについて持っている学習知識のゼロショット転送を可能にする。
10Bパラメータ言語モデルがほとんどのタスクに非自明に転送し、28のデータセットのうち21の最先端のパフォーマンスを得ることを示す。
論文 参考訳(メタデータ) (2022-05-21T00:58:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。