Cost Aware Best Arm Identification
- URL: http://arxiv.org/abs/2402.16710v2
- Date: Mon, 1 Jul 2024 02:35:19 GMT
- Title: Cost Aware Best Arm Identification
- Authors: Kellen Kanarios, Qining Zhang, Lei Ying,
- Abstract summary: We call it emphCost Aware Best Arm Identification (CABAI)
We propose a simple algorithm called emphChernoff Overlap (CO), based on a square-root rule.
Our results show that (i.e. ignoring the heterogeneous action cost results in sub-optimality in practice, and (ii.) simple algorithms can deliver near-optimal performance over a wide range of problems.
- Score: 13.380383930882784
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In this paper, we study a best arm identification problem with dual objects. In addition to the classic reward, each arm is associated with a cost distribution and the goal is to identify the largest reward arm using the minimum expected cost. We call it \emph{Cost Aware Best Arm Identification} (CABAI), which captures the separation of testing and implementation phases in product development pipelines and models the objective shift between phases, i.e., cost for testing and reward for implementation. We first derive a theoretical lower bound for CABAI and propose an algorithm called $\mathsf{CTAS}$ to match it asymptotically. To reduce the computation of $\mathsf{CTAS}$, we further propose a simple algorithm called \emph{Chernoff Overlap} (CO), based on a square-root rule, which we prove is optimal in simplified two-armed models and generalizes well in numerical experiments. Our results show that (i) ignoring the heterogeneous action cost results in sub-optimality in practice, and (ii) simple algorithms can deliver near-optimal performance over a wide range of problems.
Related papers
- Optimal Multi-Fidelity Best-Arm Identification [65.23078799972188]
In bandit best-arm identification, an algorithm is tasked with finding the arm with highest mean reward with a specified accuracy as fast as possible.
We study multi-fidelity best-arm identification, in which the can choose to sample an arm at a lower fidelity (less accurate mean estimate) for a lower cost.
Several methods have been proposed for tackling this problem, but their optimality remain elusive, notably due to loose lower bounds on the total cost needed to identify the best arm.
arXiv Detail & Related papers (2024-06-05T08:02:40Z) - Optimal Top-Two Method for Best Arm Identification and Fluid Analysis [15.353009236788262]
We propose an optimal top-2 type algorithm for the best arm identification problem.
We show that the proposed algorithm is optimal as $delta rightarrow 0$.
arXiv Detail & Related papers (2024-03-14T06:14:07Z) - Certified Multi-Fidelity Zeroth-Order Optimization [4.450536872346658]
We consider the problem of multi-fidelity zeroth-order optimization, where one can evaluate a function $f$ at various approximation levels.
We propose a certified variant of the MFDOO algorithm and derive a bound on its cost complexity for any Lipschitz function $f$.
We also prove an $f$-dependent lower bound showing that this algorithm has a near-optimal cost complexity.
arXiv Detail & Related papers (2023-08-02T07:20:37Z) - On the Sample Complexity of Representation Learning in Multi-task
Bandits with Global and Local structure [77.60508571062958]
We investigate the sample complexity of learning the optimal arm for multi-task bandit problems.
Arms consist of two components: one that is shared across tasks (that we call representation) and one that is task-specific (that we call predictor)
We devise an algorithm OSRL-SC whose sample complexity approaches the lower bound, and scales at most as $H(Glog(delta_G)+ Xlog(delta_H))$, with $X,G,H$ being, respectively, the number of tasks, representations and predictors.
arXiv Detail & Related papers (2022-11-28T08:40:12Z) - Globally Optimal Algorithms for Fixed-Budget Best Arm Identification [16.500749121196986]
We characterize the optimal rate as a result of global optimization over all possible parameters.
We show that this rate is indeed achievable by introducing a conceptual algorithm called delayed optimal tracking (DOT)
arXiv Detail & Related papers (2022-06-09T17:42:19Z) - Minimax Optimal Quantization of Linear Models: Information-Theoretic
Limits and Efficient Algorithms [59.724977092582535]
We consider the problem of quantizing a linear model learned from measurements.
We derive an information-theoretic lower bound for the minimax risk under this setting.
We show that our method and upper-bounds can be extended for two-layer ReLU neural networks.
arXiv Detail & Related papers (2022-02-23T02:39:04Z) - Mean-based Best Arm Identification in Stochastic Bandits under Reward
Contamination [80.53485617514707]
This paper proposes two algorithms, a gap-based algorithm and one based on the successive elimination, for best arm identification in sub-Gaussian bandits.
Specifically, for the gap-based algorithm, the sample complexity is optimal up to constant factors, while for the successive elimination, it is optimal up to logarithmic factors.
arXiv Detail & Related papers (2021-11-14T21:49:58Z) - Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free
Reinforcement Learning [52.76230802067506]
A novel model-free algorithm is proposed to minimize regret in episodic reinforcement learning.
The proposed algorithm employs an em early-settled reference update rule, with the aid of two Q-learning sequences.
The design principle of our early-settled variance reduction method might be of independent interest to other RL settings.
arXiv Detail & Related papers (2021-10-09T21:13:48Z) - Minimax Optimization with Smooth Algorithmic Adversaries [59.47122537182611]
We propose a new algorithm for the min-player against smooth algorithms deployed by an adversary.
Our algorithm is guaranteed to make monotonic progress having no limit cycles, and to find an appropriate number of gradient ascents.
arXiv Detail & Related papers (2021-06-02T22:03:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.