Toward high-fidelity quantum information processing and quantum
simulation with spin qubits and phonons
- URL: http://arxiv.org/abs/2402.16960v1
- Date: Mon, 26 Feb 2024 19:01:08 GMT
- Title: Toward high-fidelity quantum information processing and quantum
simulation with spin qubits and phonons
- Authors: I. Arrazola, Y. Minoguchi, M.-A. Lemonde, A. Sipahigil, P. Rabl
- Abstract summary: We show how the application of continuous dynamical decoupling techniques can substantially boost the coherence of the qubit states.
This approach offers a realistic path toward moderate- and large-scale quantum devices with spins and phonons.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We analyze the implementation of high-fidelity, phonon-mediated gate
operations and quantum simulation schemes for spin qubits associated with
silicon vacancy centers in diamond. Specifically, we show how the application
of continuous dynamical decoupling techniques can substantially boost the
coherence of the qubit states while increasing at the same time the variety of
effective spin models that can be implemented in this way. Based on realistic
models and detailed numerical simulations, we demonstrate that this decoupling
technique can suppress gate errors by more than two orders of magnitude and
enable gate infidelities below $\sim 10^{-4}$ for experimentally relevant noise
parameters. Therefore, when generalized to phononic lattices with arrays of
implanted defect centers, this approach offers a realistic path toward
moderate- and large-scale quantum devices with spins and phonons, at a level of
control that is competitive with other leading quantum-technology platforms.
Related papers
- Robust Hamiltonian Engineering for Interacting Qudit Systems [50.591267188664666]
We develop a formalism for the robust dynamical decoupling and Hamiltonian engineering of strongly interacting qudit systems.
We experimentally demonstrate these techniques in a strongly-interacting, disordered ensemble of spin-1 nitrogen-vacancy centers.
arXiv Detail & Related papers (2023-05-16T19:12:41Z) - Fano-Qubits for Quantum Devices with Enhanced Isolation and Bandwidth [0.6105362142646117]
Magneto-optical isolators and circulators have been widely used to safeguard quantum devices from reflections and noise in the readout stage.
We propose a new approach to quantum non-reciprocity that utilizes the intrinsic nonlinearity of qubits and broken spatial symmetry.
We show that a circuit containing Lorentz-type qubits can be transformed into Fano-type qubits with an asymmetric spectral response.
arXiv Detail & Related papers (2023-03-17T22:43:52Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Engineering dynamically decoupled quantum simulations with trapped ions [0.0]
An external drive can improve the coherence of a quantum many-body system by averaging out noise sources.
It can also be used to realize models that are inaccessible in the static limit.
We develop the requirements needed for a pulse sequence to decouple a quantum many-body system from an external field.
arXiv Detail & Related papers (2022-09-12T18:01:05Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Quantum control methods for robust entanglement of trapped ions [0.0]
A major obstacle in the way of practical quantum computing is achieving scalable and robust high-fidelity entangling gates.
quantum control has become an essential tool, as it can make the entangling interaction resilient to sources of noise.
arXiv Detail & Related papers (2022-06-13T11:48:05Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Scalable error mitigation for noisy quantum circuits produces
competitive expectation values [1.51714450051254]
We show the utility of zero-noise extrapolation for relevant quantum circuits using up to 26 qubits, circuit depths of 60, and 1080 CNOT gates.
We show that the efficacy of the error mitigation is greatly enhanced by additional error suppression techniques and native gate decomposition.
arXiv Detail & Related papers (2021-08-20T14:32:16Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Observation of separated dynamics of charge and spin in the
Fermi-Hubbard model [30.848418511975588]
Strongly correlated quantum systems give rise to many exotic physical phenomena, including high-temperature superconductivity.
Here, we simulate the dynamics of the one-dimensional Fermi-Hubbard model using 16 qubits on a digital superconducting quantum processor.
arXiv Detail & Related papers (2020-10-15T18:15:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.