論文の概要: Benchmarking LLMs on the Semantic Overlap Summarization Task
- arxiv url: http://arxiv.org/abs/2402.17008v2
- Date: Thu, 07 Aug 2025 19:39:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-11 20:39:05.84405
- Title: Benchmarking LLMs on the Semantic Overlap Summarization Task
- Title(参考訳): 意味的オーバーラップ要約課題におけるLCMのベンチマーク
- Authors: John Salvador, Naman Bansal, Mousumi Akter, Souvika Sarkar, Anupam Das, Shubhra Kanti Karmaker,
- Abstract要約: 本稿では,セマンティック・オーバーラップ・サマライゼーション(SOS)タスクのみを対象に,人気のあるLarge Language Models (LLM) のベンチマーク研究を行う。
このデータセットは、プライバシポリシのドキュメントから得られた135の高品質なSOSデータサンプルを提供する。
次に、TELeRと呼ばれる標準の分類法を用いて、2つのSOSデータセット上で905,216個のLCM生成サマリーを作成し、評価する。
- 参考スコア(独自算出の注目度): 7.944123371140184
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantic Overlap Summarization (SOS) is a constrained multi-document summarization task, where the constraint is to capture the common/overlapping information between two alternative narratives. In this work, we perform a benchmarking study of popular Large Language Models (LLMs) exclusively on the SOS task. Additionally, we introduce the PrivacyPolicyPairs (3P) dataset to expand the space of SOS benchmarks in terms of quantity and variety. This dataset provides 135 high-quality SOS data samples sourced from privacy policy documents. We then use a standard prompting taxonomy called TELeR to create and evaluate 905,216 distinct LLM-generated summaries over two SOS datasets from different domains, and we further conduct human evaluation on a subset of 540 samples. We conclude the paper by analyzing models' performances and the reliability of automatic evaluation. The code and datasets used to conduct this study are available at https://anonymous.4open.science/r/llm_eval-E16D.
- Abstract(参考訳): セマンティック・オーバーラップ・サマリゼーション(Semantic Overlap Summarization, SOS)は、複数の文書をまとめてまとめるタスクである。
本研究では,SOSタスクのみを対象として,人気のあるLarge Language Models (LLM) のベンチマーク研究を行う。
さらに、SOSベンチマークの空間を量と多様性の観点から拡張するために、PrivacyPolicyPairs (3P)データセットを導入します。
このデータセットは、プライバシポリシのドキュメントから得られた135の高品質なSOSデータサンプルを提供する。
次に、TELeRと呼ばれる標準分類法を用いて、異なるドメインの2つのSOSデータセットに対して905,216個のLCM生成サマリを作成し、評価し、さらに540個のサンプルのサブセットに対して人間による評価を行う。
本稿では、モデルの性能と自動評価の信頼性を分析して、論文を締めくくる。
この研究に使用されるコードとデータセットはhttps://anonymous.4open.science/r/llm_eval-E16Dで公開されている。
関連論文リスト
- An Evaluation of Large Language Models on Text Summarization Tasks Using Prompt Engineering Techniques [0.0]
大規模言語モデル(LLM)は、人間のようなテキストを生成する能力を持って、自然言語処理の進歩を続けている。
CNN/Daily MailとNewsRoom(ニューズ)、SAMSum(ダイアログ)、ArXiv(サイエンティフィック)の4つのデータセットにまたがる6つのLCMを体系的に評価する。
本研究では,ROUGEとBERTScoreの測定値を用いて評価を行った。
Longドキュメントには、短いコンテキストウィンドウを持つLLMが複数の段階で拡張入力を要約できる文ベースのチャンキング戦略が導入されている。
論文 参考訳(メタデータ) (2025-07-07T15:34:05Z) - Can LLMs Generate Tabular Summaries of Science Papers? Rethinking the Evaluation Protocol [83.90769864167301]
文献レビュー表は、科学論文の集合を要約し比較するために欠かせないものである。
学術論文の収集にあたり,ユーザの情報ニーズを最大限に満たす表を作成するタスクについて検討する。
我々の貢献は、現実世界で遭遇する3つの重要な課題に焦点を当てている: (i)ユーザープロンプトは、しばしば未特定である; (ii)検索された候補論文は、しばしば無関係な内容を含む; (iii)タスク評価は、浅いテキスト類似性技術を超えて進むべきである。
論文 参考訳(メタデータ) (2025-04-14T14:52:28Z) - How good is my story? Towards quantitative metrics for evaluating LLM-generated XAI narratives [0.0]
XAIにおけるLLMの急速な応用は、定量的な説明をユーザフレンドリーな物語に変換することである。
LLM生成の物語を評価するためのフレームワークを提案し,いくつかの自動メトリクスを探索する。
論文 参考訳(メタデータ) (2024-12-13T15:45:45Z) - Scaling Up Summarization: Leveraging Large Language Models for Long Text Extractive Summarization [0.27624021966289597]
本稿では,Large Language Models (LLM) を利用した抽出要約フレームワークであるEYEGLAXSを紹介する。
EYEGLAXSは、事実的および文法的整合性を保証するために抽出的な要約に焦点を当てている。
このシステムはPubMedやArXivといった有名なデータセットに新しいパフォーマンスベンチマークを設定する。
論文 参考訳(メタデータ) (2024-08-28T13:52:19Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - RepEval: Effective Text Evaluation with LLM Representation [55.26340302485898]
RepEvalは、評価のためにLarge Language Models(LLM)表現の投影を利用するメトリクスである。
我々の研究は、LLM表現に埋め込まれたテキスト品質に関する情報の豊かさを強調し、新しいメトリクスの開発のための洞察を提供する。
論文 参考訳(メタデータ) (2024-04-30T13:50:55Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z) - Revisiting Large Language Models as Zero-shot Relation Extractors [8.953462875381888]
リレーショナル抽出(RE)は、ゼロショット設定下であっても、一定のラベル付きまたはラベルなしのデータを一貫して含む。
近年の研究では、大きな言語モデル(LLM)が、単に自然言語のプロンプトを与えられただけで、新しいタスクにうまく移行していることが示されている。
本研究はゼロショット関係抽出器としてLLMを探索することに焦点を当てる。
論文 参考訳(メタデータ) (2023-10-08T06:17:39Z) - Embrace Divergence for Richer Insights: A Multi-document Summarization Benchmark and a Case Study on Summarizing Diverse Information from News Articles [136.84278943588652]
同一イベントを含む複数のニュース記事において遭遇する多様な情報を要約する新しい課題を提案する。
この作業を容易にするために、多様な情報を特定するためのデータ収集スキーマの概要と、DiverseSummというデータセットをキュレートした。
データセットには245のニュース記事が含まれており、各ストーリーは10のニュース記事からなり、人間公認の参照と組み合わせられる。
論文 参考訳(メタデータ) (2023-09-17T20:28:17Z) - Large Language Models for Software Engineering: A Systematic Literature Review [34.12458948051519]
大規模言語モデル(LLM)は、ソフトウェア工学(SE)を含む多くの領域に大きな影響を与えている。
我々は、2017年1月から2024年1月までの395件の研究論文を選定、分析し、4つの重要な研究質問(RQ)に答える。
これらのRQに対する回答から、現在の最先端とトレンド、既存の研究のギャップの特定、今後の研究に向けた有望な領域のフラグ付けなどについて論じる。
論文 参考訳(メタデータ) (2023-08-21T10:37:49Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
本稿では,大規模言語モデル(LLM)の様々な感情分析タスクの実行能力について検討する。
26のデータセット上の13のタスクのパフォーマンスを評価し、ドメイン固有のデータセットに基づいて訓練された小言語モデル(SLM)と比較した。
論文 参考訳(メタデータ) (2023-05-24T10:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。