Generative Retrieval with Large Language Models
- URL: http://arxiv.org/abs/2402.17010v2
- Date: Tue, 29 Oct 2024 08:45:35 GMT
- Title: Generative Retrieval with Large Language Models
- Authors: Ye Wang, Xinrun Xu, Rui Xie, Wenxin Hu, Wei Ye,
- Abstract summary: This paper explores leveraging the parameterized knowledge stored during the pre-training phase of large language models to independently recall reference passage from any starting position.
Experiments on KILT knowledge-sensitive tasks have verified that LLMs can independently recall reference passage location in various task forms.
- Score: 8.069852420775362
- License:
- Abstract: When completing knowledge-intensive tasks, humans sometimes need not just an answer but also a corresponding reference passage for auxiliary reading. Previous methods required obtaining pre-segmented article chunks through additional retrieval models. This paper explores leveraging the parameterized knowledge stored during the pre-training phase of large language models (LLMs) to independently recall reference passage from any starting position. We propose a two-stage framework that simulates the scenario of humans recalling easily forgotten references. Initially, the LLM is prompted to recall document title identifiers to obtain a coarse-grained document set. Then, based on the acquired coarse-grained document set, it recalls fine-grained passage. In the two-stage recall process, we use constrained decoding to ensure that content outside of the stored documents is not generated. To increase speed, we only recall a short prefix in the second stage, then locate its position to retrieve a complete passage. Experiments on KILT knowledge-sensitive tasks have verified that LLMs can independently recall reference passage location in various task forms, and the obtained reference significantly assist downstream tasks.
Related papers
- Identifying the Source of Generation for Large Language Models [21.919661430250798]
Large language models (LLMs) memorize text from several sources of documents.
LLMs can not provide document information on the generated content.
This work introduces token-level source identification in the decoding step.
arXiv Detail & Related papers (2024-07-05T08:52:15Z) - Ground Every Sentence: Improving Retrieval-Augmented LLMs with Interleaved Reference-Claim Generation [51.8188846284153]
RAG has been widely adopted to enhance Large Language Models (LLMs)
Attributed Text Generation (ATG) has attracted growing attention, which provides citations to support the model's responses in RAG.
This paper proposes a fine-grained ATG method called ReClaim(Refer & Claim), which alternates the generation of references and answers step by step.
arXiv Detail & Related papers (2024-07-01T20:47:47Z) - Memorizing Documents with Guidance in Large Language Models [21.919661430250798]
We propose document-wise memory architecture to track document memories in training.
We show that the proposed methods provide different memory entries for documents and high recall of document-related content in generation with trained document-wise memories.
arXiv Detail & Related papers (2024-06-23T03:12:03Z) - The Power of Summary-Source Alignments [62.76959473193149]
Multi-document summarization (MDS) is a challenging task, often decomposed to subtasks of salience and redundancy detection.
alignment of corresponding sentences between a reference summary and its source documents has been leveraged to generate training data.
This paper proposes extending the summary-source alignment framework by applying it at the more fine-grained proposition span level.
arXiv Detail & Related papers (2024-06-02T19:35:19Z) - Peering into the Mind of Language Models: An Approach for Attribution in Contextual Question Answering [9.86691461253151]
We introduce a novel method for attribution in contextual question answering, leveraging the hidden state representations of large language models (LLMs)
Our approach bypasses the need for extensive model retraining and retrieval model overhead, offering granular attributions and preserving the quality of generated answers.
We present Verifiability-granular, an attribution dataset which has token level annotations for LLM generations in the contextual question answering setup.
arXiv Detail & Related papers (2024-05-28T09:12:44Z) - R4: Reinforced Retriever-Reorder-Responder for Retrieval-Augmented Large Language Models [32.598670876662375]
Retrieval-augmented large language models (LLMs) leverage relevant content retrieved by information retrieval systems to generate correct responses.
Existing retriever-responder methods typically append relevant documents to the prompt of LLMs to perform text generation tasks.
We propose a new pipeline named "Reinforced Retriever-Reorder-Responder" to learn document orderings for retrieval-augmented LLMs.
arXiv Detail & Related papers (2024-05-04T12:59:10Z) - Previously on the Stories: Recap Snippet Identification for Story
Reading [51.641565531840186]
We propose the first benchmark on this useful task called Recap Snippet Identification with a hand-crafted evaluation dataset.
Our experiments show that the proposed task is challenging to PLMs, LLMs, and proposed methods as the task requires a deep understanding of the plot correlation between snippets.
arXiv Detail & Related papers (2024-02-11T18:27:14Z) - RET-LLM: Towards a General Read-Write Memory for Large Language Models [53.288356721954514]
RET-LLM is a novel framework that equips large language models with a general write-read memory unit.
Inspired by Davidsonian semantics theory, we extract and save knowledge in the form of triplets.
Our framework exhibits robust performance in handling temporal-based question answering tasks.
arXiv Detail & Related papers (2023-05-23T17:53:38Z) - Recitation-Augmented Language Models [85.30591349383849]
We show that RECITE is a powerful paradigm for knowledge-intensive NLP tasks.
Specifically, we show that by utilizing recitation as the intermediate step, a recite-and-answer scheme can achieve new state-of-the-art performance.
arXiv Detail & Related papers (2022-10-04T00:49:20Z) - Generate rather than Retrieve: Large Language Models are Strong Context
Generators [74.87021992611672]
We present a novel perspective for solving knowledge-intensive tasks by replacing document retrievers with large language model generators.
We call our method generate-then-read (GenRead), which first prompts a large language model to generate contextutal documents based on a given question, and then reads the generated documents to produce the final answer.
arXiv Detail & Related papers (2022-09-21T01:30:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.