Identifying the Source of Generation for Large Language Models
- URL: http://arxiv.org/abs/2407.12846v1
- Date: Fri, 5 Jul 2024 08:52:15 GMT
- Title: Identifying the Source of Generation for Large Language Models
- Authors: Bumjin Park, Jaesik Choi,
- Abstract summary: Large language models (LLMs) memorize text from several sources of documents.
LLMs can not provide document information on the generated content.
This work introduces token-level source identification in the decoding step.
- Score: 21.919661430250798
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language models (LLMs) memorize text from several sources of documents. In pretraining, LLM trains to maximize the likelihood of text but neither receives the source of the text nor memorizes the source. Accordingly, LLM can not provide document information on the generated content, and users do not obtain any hint of reliability, which is crucial for factuality or privacy infringement. This work introduces token-level source identification in the decoding step, which maps the token representation to the reference document. We propose a bi-gram source identifier, a multi-layer perceptron with two successive token representations as input for better generalization. We conduct extensive experiments on Wikipedia and PG19 datasets with several LLMs, layer locations, and identifier sizes. The overall results show a possibility of token-level source identifiers for tracing the document, a crucial problem for the safe use of LLMs.
Related papers
- CUTE: Measuring LLMs' Understanding of Their Tokens [54.70665106141121]
Large Language Models (LLMs) show remarkable performance on a wide variety of tasks.
This raises the question: To what extent can LLMs learn orthographic information?
We propose a new benchmark, which features a collection of tasks designed to test the orthographic knowledge of LLMs.
arXiv Detail & Related papers (2024-09-23T18:27:03Z) - Cool-Fusion: Fuse Large Language Models without Training [73.17551121242602]
emphCool-Fusion is a method that does not require any type of training like the ensemble approaches.
emphCool-Fusion increases accuracy from three strong source LLMs by a significant 8%-17.8%.
arXiv Detail & Related papers (2024-07-29T09:02:19Z) - Detecting Hallucinations in Large Language Model Generation: A Token Probability Approach [0.0]
Large Language Models (LLMs) produce inaccurate outputs, also known as hallucinations.
This paper introduces a supervised learning approach employing only four numerical features derived from tokens and vocabulary probabilities obtained from other evaluators.
The method yields promising results, surpassing state-of-the-art outcomes in multiple tasks across three different benchmarks.
arXiv Detail & Related papers (2024-05-30T03:00:47Z) - Peering into the Mind of Language Models: An Approach for Attribution in Contextual Question Answering [9.86691461253151]
We introduce a novel method for attribution in contextual question answering, leveraging the hidden state representations of large language models (LLMs)
Our approach bypasses the need for extensive model retraining and retrieval model overhead, offering granular attributions and preserving the quality of generated answers.
We present Verifiability-granular, an attribution dataset which has token level annotations for LLM generations in the contextual question answering setup.
arXiv Detail & Related papers (2024-05-28T09:12:44Z) - Generative Text Steganography with Large Language Model [10.572149957139736]
Black-box generative text steganographic method based on user interfaces of large language models, which is called LLM-Stega.
We first construct a keyword set and design a new encrypted steganographic mapping to embed secret messages.
Comprehensive experiments demonstrate that the proposed LLM-Stega outperforms current state-of-the-art methods.
arXiv Detail & Related papers (2024-04-16T02:19:28Z) - Generative Retrieval with Large Language Models [8.069852420775362]
This paper explores leveraging the parameterized knowledge stored during the pre-training phase of large language models to independently recall reference passage from any starting position.
Experiments on KILT knowledge-sensitive tasks have verified that LLMs can independently recall reference passage location in various task forms.
arXiv Detail & Related papers (2024-02-26T20:35:32Z) - LLatrieval: LLM-Verified Retrieval for Verifiable Generation [67.93134176912477]
Verifiable generation aims to let the large language model (LLM) generate text with supporting documents.
We propose LLatrieval (Large Language Model Verified Retrieval), where the LLM updates the retrieval result until it verifies that the retrieved documents can sufficiently support answering the question.
Experiments show that LLatrieval significantly outperforms extensive baselines and achieves state-of-the-art results.
arXiv Detail & Related papers (2023-11-14T01:38:02Z) - LMDX: Language Model-based Document Information Extraction and Localization [23.656970495804963]
Large Language Models (LLM) have revolutionized Natural Language Processing (NLP)
Their application in extracting information from visually rich documents has not yet been successful.
Main obstacles to adopting LLMs for this task include the absence of layout encoding within LLMs.
arXiv Detail & Related papers (2023-09-19T22:32:56Z) - Towards Codable Watermarking for Injecting Multi-bits Information to LLMs [86.86436777626959]
Large language models (LLMs) generate texts with increasing fluency and realism.
Existing watermarking methods are encoding-inefficient and cannot flexibly meet the diverse information encoding needs.
We propose Codable Text Watermarking for LLMs (CTWL) that allows text watermarks to carry multi-bit customizable information.
arXiv Detail & Related papers (2023-07-29T14:11:15Z) - LLMDet: A Third Party Large Language Models Generated Text Detection
Tool [119.0952092533317]
Large language models (LLMs) are remarkably close to high-quality human-authored text.
Existing detection tools can only differentiate between machine-generated and human-authored text.
We propose LLMDet, a model-specific, secure, efficient, and extendable detection tool.
arXiv Detail & Related papers (2023-05-24T10:45:16Z) - Inference with Reference: Lossless Acceleration of Large Language Models [97.04200102556551]
LLMA is an accelerator to speed up Large Language Model (LLM) inference with references.
It is motivated by the observation that there are abundant identical text spans between the decoding result by an LLM and the reference that is available in many real world scenarios.
arXiv Detail & Related papers (2023-04-10T09:55:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.