Generative AI for fast and accurate statistical computation of fluids
- URL: http://arxiv.org/abs/2409.18359v2
- Date: Mon, 03 Feb 2025 02:58:10 GMT
- Title: Generative AI for fast and accurate statistical computation of fluids
- Authors: Roberto Molinaro, Samuel Lanthaler, Bogdan Raonić, Tobias Rohner, Victor Armegioiu, Stephan Simonis, Dana Grund, Yannick Ramic, Zhong Yi Wan, Fei Sha, Siddhartha Mishra, Leonardo Zepeda-Núñez,
- Abstract summary: We present a generative AI algorithm for addressing the pressing task of fast, accurate, and robust statistical computation.
Our algorithm, termed as GenCFD, is based on an end-to-end conditional score-based diffusion model.
- Score: 19.970579302838914
- License:
- Abstract: We present a generative AI algorithm for addressing the pressing task of fast, accurate, and robust statistical computation of three-dimensional turbulent fluid flows. Our algorithm, termed as GenCFD, is based on an end-to-end conditional score-based diffusion model. Through extensive numerical experimentation with a set of challenging fluid flows, we demonstrate that GenCFD provides an accurate approximation of relevant statistical quantities of interest while also efficiently generating high-quality realistic samples of turbulent fluid flows and ensuring excellent spectral resolution. In contrast, ensembles of deterministic ML algorithms, trained to minimize mean square errors, regress to the mean flow. We present rigorous theoretical results uncovering the surprising mechanisms through which diffusion models accurately generate fluid flows. These mechanisms are illustrated with solvable toy models that exhibit the mathematically relevant features of turbulent fluid flows while being amenable to explicit analytical formulae. Our codes are publicly available at https://github.com/camlab-ethz/GenCFD.
Related papers
- Flow-based generative models as iterative algorithms in probability space [18.701755188870823]
Flow-based generative models offer exact likelihood estimation, efficient sampling, and deterministic transformations.
This tutorial presents an intuitive mathematical framework for flow-based generative models.
We aim to equip researchers and practitioners with the necessary tools to effectively apply flow-based generative models in signal processing and machine learning.
arXiv Detail & Related papers (2025-02-19T03:09:18Z) - Comparison of Generative Learning Methods for Turbulence Modeling [1.2499537119440245]
High resolution techniques such as Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) are generally not computationally affordable.
Recent advances in machine learning, specifically in generative probabilistic models, offer promising alternatives for turbulence modeling.
This paper investigates the application of three generative models - Variational Autoencoders (VAE), Deep Conversaal Generative Adversarial Networks (DCGAN), and Denoising Diffusion Probabilistic Models (DDPM)
arXiv Detail & Related papers (2024-11-25T14:20:53Z) - FlowTS: Time Series Generation via Rectified Flow [67.41208519939626]
FlowTS is an ODE-based model that leverages rectified flow with straight-line transport in probability space.
For unconditional setting, FlowTS achieves state-of-the-art performance, with context FID scores of 0.019 and 0.011 on Stock and ETTh datasets.
For conditional setting, we have achieved superior performance in solar forecasting.
arXiv Detail & Related papers (2024-11-12T03:03:23Z) - Inpainting Computational Fluid Dynamics with Deep Learning [8.397730500554047]
An effective fluid data completion method reduces the required number of sensors in a fluid dynamics experiment.
The ill-posed nature of the fluid data completion problem makes it prohibitively difficult to obtain a theoretical solution.
We employ the vector quantization technique to map both complete and incomplete fluid data spaces onto discrete-valued lower-dimensional representations.
arXiv Detail & Related papers (2024-02-27T03:44:55Z) - Uncertainty-aware Surrogate Models for Airfoil Flow Simulations with Denoising Diffusion Probabilistic Models [26.178192913986344]
We make a first attempt to use denoising diffusion probabilistic models (DDPMs) to train an uncertainty-aware surrogate model for turbulence simulations.
Our results show DDPMs can successfully capture the whole distribution of solutions and, as a consequence, accurately estimate the uncertainty of the simulations.
We also evaluate an emerging generative modeling variant, flow matching, in comparison to regular diffusion models.
arXiv Detail & Related papers (2023-12-08T19:04:17Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
Diffusion models have recently emerged as a powerful framework for generative modeling.
This work introduces a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - A Denoising Diffusion Model for Fluid Field Prediction [0.0]
We propose a novel denoising diffusion generative model for predicting nonlinear fluid fields named FluidDiff.
By performing a diffusion process, the model is able to learn a complex representation of the high-dimensional dynamic system.
Langevin sampling is used to generate predictions for the flow state under specified initial conditions.
arXiv Detail & Related papers (2023-01-27T11:30:40Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z) - Gaussianization Flows [113.79542218282282]
We propose a new type of normalizing flow model that enables both efficient iteration of likelihoods and efficient inversion for sample generation.
Because of this guaranteed expressivity, they can capture multimodal target distributions without compromising the efficiency of sample generation.
arXiv Detail & Related papers (2020-03-04T08:15:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.