論文の概要: CGGM: A conditional graph generation model with adaptive sparsity for node anomaly detection in IoT networks
- arxiv url: http://arxiv.org/abs/2402.17363v3
- Date: Thu, 22 Aug 2024 07:45:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-23 19:35:21.522750
- Title: CGGM: A conditional graph generation model with adaptive sparsity for node anomaly detection in IoT networks
- Title(参考訳): CGGM:IoTネットワークにおけるノード異常検出のための適応間隔付き条件付きグラフ生成モデル
- Authors: Xianshi Su, Munan Li, Runze Ma, Jialong Li, Tongbang Jiang, Hao Long,
- Abstract要約: 本稿では,マイノリティクラスに属するサンプルを生成するために,CGGMと呼ばれる新しいグラフ生成モデルを提案する。
フレームワークは、条件付きグラフ生成モジュールとグラフベースの異常検出モジュールの2つのコアモジュールから構成される。
実験により、CGGMは精度とばらつきの点で最先端の手法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 0.6974178500813132
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic graphs are extensively employed for detecting anomalous behavior in nodes within the Internet of Things (IoT). Graph generative models are often used to address the issue of imbalanced node categories in dynamic graphs. Neverthe less, the constraints it faces include the monotonicity of adjacency relationships, the difficulty in constructing multi-dimensional features for nodes, and the lack of a method for end-to-end generation of multiple categories of nodes. In this paper, we propose a novel graph generation model, called CGGM, specifically for generating samples belonging to the minority class. The framework consists two core module: a conditional graph generation module and a graph-based anomaly detection module. The generative module adapts to the sparsity of the matrix by downsampling a noise adjacency matrix, and incorporates a multi-dimensional feature encoder based on multi-head self-attention to capture latent dependencies among features. Additionally, a latent space constraint is combined with the distribution distance to approximate the latent distribution of real data. The graph-based anomaly detection module utilizes the generated balanced dataset to predict the node behaviors. Extensive experiments have shown that CGGM outperforms the state-of-the-art methods in terms of accuracy and divergence. The results also demonstrate CGGM can generated diverse data categories, that enhancing the performance of multi-category classification task.
- Abstract(参考訳): 動的グラフはIoT(Internet of Things)内のノードにおける異常な振る舞いを検出するために広く使用されている。
グラフ生成モデルは、動的グラフにおける不均衡ノードカテゴリの問題に対処するためにしばしば使用される。
それにもかかわらず、それが直面する制約には、隣接関係の単調性、ノードの多次元機能構築の難しさ、ノードの複数カテゴリのエンドツーエンド生成方法の欠如などが含まれる。
本稿では,マイノリティクラスに属するサンプルを生成するために,CGGMと呼ばれる新しいグラフ生成モデルを提案する。
フレームワークは、条件付きグラフ生成モジュールとグラフベースの異常検出モジュールの2つのコアモジュールから構成される。
生成モジュールは、ノイズ隣接行列をダウンサンプリングすることによりマトリックスの空間性に適応し、多頭部自己アテンションに基づく多次元特徴エンコーダを内蔵し、特徴間の潜伏依存性を捕捉する。
さらに、実データの潜時分布を近似するために、潜時空間制約と分布距離を結合する。
グラフベースの異常検出モジュールは、生成された平衡データセットを使用してノードの挙動を予測する。
大規模実験により、CGGMは精度とばらつきの点で最先端の手法より優れていることが示されている。
また、CGGMは、多カテゴリ分類タスクの性能を高めるために、多様なデータカテゴリを生成することができることを示した。
関連論文リスト
- Zero-shot Generalist Graph Anomaly Detection with Unified Neighborhood Prompts [21.05107001235223]
グラフ異常検出(GAD)は、通常のパターンから著しく逸脱したグラフ内のノードを特定することを目的としている。
既存のGADメソッドは、教師付きでも教師なしでも、ワン・モデル・フォー・ワン・データセットのアプローチである。
ゼロショット・ジェネラリストのGADがUNPromptに近づき、一対一検出モデルを訓練する。
論文 参考訳(メタデータ) (2024-10-18T22:23:59Z) - Generalization of Graph Neural Networks is Robust to Model Mismatch [84.01980526069075]
グラフニューラルネットワーク(GNN)は、その一般化能力によってサポートされている様々なタスクにおいて、その効果を実証している。
本稿では,多様体モデルから生成される幾何グラフで動作するGNNについて検討する。
本稿では,そのようなモデルミスマッチの存在下でのGNN一般化の堅牢性を明らかにする。
論文 参考訳(メタデータ) (2024-08-25T16:00:44Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
自己指導型自己学習(BOURNE)に基づく新しい統合グラフ異常検出フレームワークを提案する。
ノードとエッジ間のコンテキスト埋め込みを交換することで、ノードとエッジの異常を相互に検出できる。
BOURNEは、負のサンプリングを必要としないため、大きなグラフを扱う際の効率を高めることができる。
論文 参考訳(メタデータ) (2023-07-28T00:44:57Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
グラフレベルの異常検出(GAD)は、その構造やノードの特徴に異常なグラフを検出する問題を記述している。
GADの課題の1つは、局所的および大域的非正則グラフの検出を可能にするグラフ表現を考案することである。
本稿では,グラフとノード表現の連成ランダム蒸留により,グローバルおよびローカルな正規パターン情報を豊富に学習するGADのための新しい深部異常検出手法を提案する。
論文 参考訳(メタデータ) (2021-12-19T05:04:53Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
本稿では,グラフ全体を部分的に観測されたマルコフ確率場としてモデル化するEPFGNN(Explicit Pairwise Factorized Graph Neural Network)を提案する。
出力-出力関係をモデル化するための明示的なペアワイズ要素を含み、入力-出力関係をモデル化するためにGNNバックボーンを使用する。
本研究では,グラフ上での半教師付きノード分類の性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2021-07-27T19:47:53Z) - A Deep Latent Space Model for Graph Representation Learning [10.914558012458425]
本稿では,従来の潜時変動に基づく生成モデルをディープラーニングフレームワークに組み込むために,有向グラフのための深潜時空間モデル(DLSM)を提案する。
提案モデルは,階層的変動型オートエンコーダアーキテクチャによって階層的に接続されるグラフ畳み込みネットワーク(GCN)エンコーダとデコーダから構成される。
実世界のデータセットにおける実験により,提案モデルがリンク予測とコミュニティ検出の両タスクにおける最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2021-06-22T12:41:19Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Stochastic Aggregation in Graph Neural Networks [9.551282469099887]
グラフニューラルネットワーク(GNN)は、過スムージングおよび限られた電力識別を含む病理を発現する。
GNNsにおける集約のための統合フレームワーク(STAG)を提案する。そこでは、近隣からの集約プロセスにノイズが(適応的に)注入され、ノード埋め込みを形成する。
論文 参考訳(メタデータ) (2021-02-25T02:52:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。