論文の概要: Conditional Distribution Learning on Graphs
- arxiv url: http://arxiv.org/abs/2411.15206v2
- Date: Tue, 28 Jan 2025 15:27:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:39:32.627785
- Title: Conditional Distribution Learning on Graphs
- Title(参考訳): グラフ上の条件分布学習
- Authors: Jie Chen, Hua Mao, Yuanbiao Gou, Zhu Wang, Xi Peng,
- Abstract要約: 半教師付きグラフ分類のためのグラフ構造化データからグラフ表現を学習する条件分布学習(CDL)法を提案する。
具体的には、元の特徴に対して弱機能および強拡張機能の条件分布を整列するエンドツーエンドグラフ表現学習モデルを提案する。
- 参考スコア(独自算出の注目度): 15.730933577970687
- License:
- Abstract: Leveraging the diversity and quantity of data provided by various graph-structured data augmentations while preserving intrinsic semantic information is challenging. Additionally, successive layers in graph neural network (GNN) tend to produce more similar node embeddings, while graph contrastive learning aims to increase the dissimilarity between negative pairs of node embeddings. This inevitably results in a conflict between the message-passing mechanism (MPM) of GNNs and the contrastive learning (CL) of negative pairs via intraviews. In this paper, we propose a conditional distribution learning (CDL) method that learns graph representations from graph-structured data for semisupervised graph classification. Specifically, we present an end-to-end graph representation learning model to align the conditional distributions of weakly and strongly augmented features over the original features. This alignment enables the CDL model to effectively preserve intrinsic semantic information when both weak and strong augmentations are applied to graph-structured data. To avoid the conflict between the MPM and the CL of negative pairs, positive pairs of node representations are retained for measuring the similarity between the original features and the corresponding weakly augmented features. Extensive experiments with several benchmark graph datasets demonstrate the effectiveness of the proposed CDL method.
- Abstract(参考訳): 固有の意味情報を保存しながら、様々なグラフ構造化データ拡張によって提供されるデータの多様性と量を活用することは困難である。
さらに、グラフニューラルネットワーク(GNN)の連続層は、より類似したノード埋め込みを生成する傾向があり、グラフコントラスト学習は、ノード埋め込みの負のペア間の相違性を高めることを目的としている。
これは必然的に、GNNのメッセージパッシング機構(MPM)と、イントラビューによる負のペアの対照的な学習(CL)との間に矛盾をもたらす。
本稿では,半教師付きグラフ分類のためのグラフ構造化データからグラフ表現を学習する条件分布学習(CDL)手法を提案する。
具体的には、元の特徴に対して弱機能および強拡張機能の条件分布を整列するエンドツーエンドグラフ表現学習モデルを提案する。
このアライメントにより、グラフ構造化データに弱い拡張と強い拡張の両方を適用する場合、CDLモデルは本質的な意味情報を効果的に保存できる。
負対のMPMとCLの衝突を避けるため、元の特徴とそれに対応する弱拡張特徴との類似性を測定するために、ノード表現の正対が保持される。
いくつかのベンチマークグラフデータセットを用いた大規模な実験により,提案手法の有効性が示された。
関連論文リスト
- PAC Learnability under Explanation-Preserving Graph Perturbations [15.83659369727204]
グラフニューラルネットワーク(GNN)はグラフ上で動作し、グラフ構造化データの複雑な関係と依存関係を活用する。
グラフ説明は、その分類ラベルに関して入力グラフの「ほぼ」統計量である部分グラフである。
本研究は、GNNの設計と訓練において、そのような摂動不変性を利用する2つの方法を検討する。
論文 参考訳(メタデータ) (2024-02-07T17:23:15Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Graph Out-of-Distribution Generalization with Controllable Data
Augmentation [51.17476258673232]
グラフニューラルネットワーク(GNN)は,グラフ特性の分類において異常な性能を示した。
トレーニングとテストデータの選択バイアスが原因で、分散偏差が広まっています。
仮想サンプルの分布偏差を測定するためのOODキャリブレーションを提案する。
論文 参考訳(メタデータ) (2023-08-16T13:10:27Z) - Diving into Unified Data-Model Sparsity for Class-Imbalanced Graph
Representation Learning [30.23894624193583]
非ユークリッドグラフデータに基づくグラフニューラルネットワーク(GNN)トレーニングは、しばしば比較的高い時間コストに直面する。
グラフ決定(Graph Decantation, GraphDec)と呼ばれる統一されたデータモデル動的疎結合フレームワークを開発し, 大規模なクラス不均衡グラフデータのトレーニングによる課題に対処する。
論文 参考訳(メタデータ) (2022-10-01T01:47:00Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
本稿では,グラフ全体を部分的に観測されたマルコフ確率場としてモデル化するEPFGNN(Explicit Pairwise Factorized Graph Neural Network)を提案する。
出力-出力関係をモデル化するための明示的なペアワイズ要素を含み、入力-出力関係をモデル化するためにGNNバックボーンを使用する。
本研究では,グラフ上での半教師付きノード分類の性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2021-07-27T19:47:53Z) - Hyperbolic Graph Embedding with Enhanced Semi-Implicit Variational
Inference [48.63194907060615]
半単純グラフ変分自動エンコーダを用いて,低次元グラフ潜在表現における高次統計量を取得する。
我々は、階層構造を示すグラフを効率的に表現するために、ポインケア埋め込みを通して潜在空間に双曲幾何学を組み込む。
論文 参考訳(メタデータ) (2020-10-31T05:48:34Z) - Graph Contrastive Learning with Adaptive Augmentation [23.37786673825192]
本稿では,適応的拡張を用いた新しいグラフコントラスト表現学習法を提案する。
具体的には,ノードの集中度に基づく拡張スキームを設計し,重要な結合構造を明らかにする。
提案手法は,既存の最先端のベースラインを一貫して上回り,教師付きベースラインを超えている。
論文 参考訳(メタデータ) (2020-10-27T15:12:21Z) - CopulaGNN: Towards Integrating Representational and Correlational Roles
of Graphs in Graph Neural Networks [23.115288017590093]
グラフニューラルネットワーク(GNN)モデルが両タイプの情報を効果的に活用する方法について検討する。
提案したCopula Graph Neural Network (CopulaGNN)は、幅広いGNNモデルをベースモデルとして扱うことができる。
論文 参考訳(メタデータ) (2020-10-05T15:20:04Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
グラフベースのSemi-Supervised Learning (SSL)は、少数のラベル付きデータのラベルをグラフ経由で残りの巨大なラベル付きデータに転送することを目的としている。
本稿では,データ類似性とグラフ構造を両立させ,監視信号の強化を図るため,新しいGCNベースのSSLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-15T13:59:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。