Warm-Starting the VQE with Approximate Complex Amplitude Encoding
- URL: http://arxiv.org/abs/2402.17378v1
- Date: Tue, 27 Feb 2024 10:15:25 GMT
- Title: Warm-Starting the VQE with Approximate Complex Amplitude Encoding
- Authors: Felix Truger, Johanna Barzen, Frank Leymann, Julian Obst
- Abstract summary: The Variational Quantum Eigensolver (VQE) is a quantum algorithm to determine the ground state of quantum-mechanical systems.
We propose a warm-starting technique, that utilizes an approximation to generate beneficial initial parameter values for the VQE.
Such warm-starts open the path to fruitful combinations of classical approximation algorithms and quantum algorithms.
- Score: 0.26217304977339473
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Variational Quantum Eigensolver (VQE) is a Variational Quantum Algorithm
(VQA) to determine the ground state of quantum-mechanical systems. As a VQA, it
makes use of a classical computer to optimize parameter values for its quantum
circuit. However, each iteration of the VQE requires a multitude of
measurements, and the optimization is subject to obstructions, such as barren
plateaus, local minima, and subsequently slow convergence. We propose a
warm-starting technique, that utilizes an approximation to generate beneficial
initial parameter values for the VQE aiming to mitigate these effects. The
warm-start is based on Approximate Complex Amplitude Encoding, a VQA using
fidelity estimations from classical shadows to encode complex amplitude vectors
into quantum states. Such warm-starts open the path to fruitful combinations of
classical approximation algorithms and quantum algorithms. In particular, the
evaluation of our approach shows that the warm-started VQE reaches higher
quality solutions earlier than the original VQE.
Related papers
- Optimization by Decoded Quantum Interferometry [43.55132675053983]
We introduce a quantum algorithm for reducing classical optimization problems to classical decoding problems.
We show that DQI achieves a better approximation ratio than any quantum-time classical algorithm known to us.
arXiv Detail & Related papers (2024-08-15T17:47:42Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Optimizing the depth of variational quantum algorithms is strongly
QCMA-hard to approximate [0.6445605125467572]
Variational Quantum Algorithms (VQAs) have seen intense study towards near-term applications on quantum hardware.
A crucial parameter for VQAs is the emphdepth' of the variational ansatz'' used.
We show that approximating the optimal depth for a given VQA ansatz is intractable.
arXiv Detail & Related papers (2022-11-22T19:00:01Z) - Study of Adaptative Derivative-Assemble Pseudo-Trotter Ansatzes in VQE
through qiskit API [0.0]
Variational Quantum Algorithms (VQAs) were designed to answer the problem of Quantum Phase Estimation Algorithm.
ADAPT-VQE determines a quasi-optimal ansatz with a minimal number of parameters.
We will compare all of these algorithms on different criterions such as the number of parameters, the accuracy or the number of CNOT gate used on H2 and LiH molecules.
arXiv Detail & Related papers (2022-10-25T16:53:14Z) - Hybrid Quantum Classical Simulations [0.0]
We report on two major hybrid applications of quantum computing, namely, the quantum approximate optimisation algorithm (QAOA) and the variational quantum eigensolver (VQE)
Both are hybrid quantum classical algorithms as they require incremental communication between a classical central processing unit and a quantum processing unit to solve a problem.
arXiv Detail & Related papers (2022-10-06T10:49:15Z) - Error Mitigation-Aided Optimization of Parameterized Quantum Circuits:
Convergence Analysis [42.275148861039895]
Variational quantum algorithms (VQAs) offer the most promising path to obtaining quantum advantages via noisy processors.
gate noise due to imperfections and decoherence affects the gradient estimates by introducing a bias.
Quantum error mitigation (QEM) techniques can reduce the estimation bias without requiring any increase in the number of qubits.
QEM can reduce the number of required iterations, but only as long as the quantum noise level is sufficiently small.
arXiv Detail & Related papers (2022-09-23T10:48:04Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2021-07-11T10:56:24Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
Variational quantum algorithms (VQAs) have the potential of utilizing near-term quantum machines to gain certain computational advantages.
Modern VQAs suffer from cumbersome computational overhead, hampered by the tradition of employing a solitary quantum processor to handle large data.
Here we devise an efficient distributed optimization scheme, called QUDIO, to address this issue.
arXiv Detail & Related papers (2021-06-24T08:18:42Z) - Efficient measure for the expressivity of variational quantum algorithms [72.59790225766777]
We exploit an advanced tool in statistical learning theory, i.e., covering number, to study the expressivity of variational quantum algorithms.
We first exhibit how the expressivity of VQAs with an arbitrary ansatze is upper bounded by the number of quantum gates and the measurement observable.
We then explore the expressivity of VQAs on near-term quantum chips, where the system noise is considered.
arXiv Detail & Related papers (2021-04-20T13:51:08Z) - Classically optimal variational quantum algorithms [0.0]
Hybrid quantum-classical algorithms, such as variational quantum algorithms (VQA), are suitable for implementation on NISQ computers.
In this Letter we expand an implicit step of VQAs: the classical pre-computation subroutine which can non-trivially use classical algorithms to simplify, transform, or specify problem instance-specific variational quantum circuits.
arXiv Detail & Related papers (2021-03-31T13:33:38Z) - Improving the variational quantum eigensolver using variational
adiabatic quantum computing [0.0]
variational quantumsampling (VAQC) is a hybrid quantum-classical algorithm for finding a Hamiltonian minimum eigenvalue of a quantum circuit.
We show that VAQC can provide more accurate solutions than "plain" VQE, for the evaluation.
arXiv Detail & Related papers (2021-02-04T20:25:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.