PANDAS: Prototype-based Novel Class Discovery and Detection
- URL: http://arxiv.org/abs/2402.17420v2
- Date: Tue, 30 Apr 2024 15:05:34 GMT
- Title: PANDAS: Prototype-based Novel Class Discovery and Detection
- Authors: Tyler L. Hayes, César R. de Souza, Namil Kim, Jiwon Kim, Riccardo Volpi, Diane Larlus,
- Abstract summary: We look at ways to extend a detector trained for a set of base classes so it can spot the presence of novel classes.
We propose PANDAS, a method for novel class discovery and detection.
We experimentally demonstrate the effectiveness of PANDAS on the VOC 2012 and COCO-to-LVIS benchmarks.
- Score: 28.615935639878593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object detectors are typically trained once and for all on a fixed set of classes. However, this closed-world assumption is unrealistic in practice, as new classes will inevitably emerge after the detector is deployed in the wild. In this work, we look at ways to extend a detector trained for a set of base classes so it can i) spot the presence of novel classes, and ii) automatically enrich its repertoire to be able to detect those newly discovered classes together with the base ones. We propose PANDAS, a method for novel class discovery and detection. It discovers clusters representing novel classes from unlabeled data, and represents old and new classes with prototypes. During inference, a distance-based classifier uses these prototypes to assign a label to each detected object instance. The simplicity of our method makes it widely applicable. We experimentally demonstrate the effectiveness of PANDAS on the VOC 2012 and COCO-to-LVIS benchmarks. It performs favorably against the state of the art for this task while being computationally more affordable.
Related papers
- YOLOOC: YOLO-based Open-Class Incremental Object Detection with Novel Class Discovery [9.437644584141822]
Open-world object detection (OWOD) has gotten a lot of attention recently.
Previous approaches hinge on strongly-supervised or weakly-supervised novel-class data for novel-class detection.
We construct a new benchmark that novel classes are only encountered at the inference stage.
arXiv Detail & Related papers (2024-03-30T06:17:39Z) - Open-Vocabulary Object Detection with Meta Prompt Representation and Instance Contrastive Optimization [63.66349334291372]
We propose a framework with Meta prompt and Instance Contrastive learning (MIC) schemes.
Firstly, we simulate a novel-class-emerging scenario to help the prompt that learns class and background prompts generalize to novel classes.
Secondly, we design an instance-level contrastive strategy to promote intra-class compactness and inter-class separation, which benefits generalization of the detector to novel class objects.
arXiv Detail & Related papers (2024-03-14T14:25:10Z) - DualTeacher: Bridging Coexistence of Unlabelled Classes for
Semi-supervised Incremental Object Detection [53.8061502411777]
In real-world applications, an object detector often encounters object instances from new classes and needs to accommodate them effectively.
Previous work formulated this critical problem as incremental object detection (IOD), which assumes the object instances of new classes to be fully annotated in incremental data.
We consider a more realistic setting named semi-supervised IOD (SSIOD), where the object detector needs to learn new classes incrementally from a few labelled data and massive unlabelled data.
arXiv Detail & Related papers (2023-12-13T10:46:14Z) - ProxyDet: Synthesizing Proxy Novel Classes via Classwise Mixup for
Open-Vocabulary Object Detection [7.122652901894367]
Open-vocabulary object detection (OVOD) aims to recognize novel objects whose categories are not included in the training set.
We present a novel, yet simple technique that helps generalization on the overall distribution of novel classes.
arXiv Detail & Related papers (2023-12-12T13:45:56Z) - Few-Shot Class-Incremental Learning via Training-Free Prototype
Calibration [67.69532794049445]
We find a tendency for existing methods to misclassify the samples of new classes into base classes, which leads to the poor performance of new classes.
We propose a simple yet effective Training-frEE calibratioN (TEEN) strategy to enhance the discriminability of new classes.
arXiv Detail & Related papers (2023-12-08T18:24:08Z) - Bridging Non Co-occurrence with Unlabeled In-the-wild Data for
Incremental Object Detection [56.22467011292147]
Several incremental learning methods are proposed to mitigate catastrophic forgetting for object detection.
Despite the effectiveness, these methods require co-occurrence of the unlabeled base classes in the training data of the novel classes.
We propose the use of unlabeled in-the-wild data to bridge the non-occurrence caused by the missing base classes during the training of additional novel classes.
arXiv Detail & Related papers (2021-10-28T10:57:25Z) - Adversarially Robust One-class Novelty Detection [83.1570537254877]
We show that existing novelty detectors are susceptible to adversarial examples.
We propose a defense strategy that manipulates the latent space of novelty detectors to improve the robustness against adversarial examples.
arXiv Detail & Related papers (2021-08-25T10:41:29Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.