論文の概要: A Holistic Approach for Bitcoin Confirmation Times & Optimal Fee Selection
- arxiv url: http://arxiv.org/abs/2402.17474v1
- Date: Tue, 27 Feb 2024 12:55:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 06:59:15.611655
- Title: A Holistic Approach for Bitcoin Confirmation Times & Optimal Fee Selection
- Title(参考訳): Bitcoin確認時間と最適価格選択の全体的アプローチ
- Authors: Rowel Gündlach, Ivo V. Stoepker, Stella Kapodistria, Jacques A. C. Resing,
- Abstract要約: Bitcoinは、相当な対速取引の対象だ。
ユーザーは取引手数料を増やすことで取引確認時間を短縮できる。
最適料金を決定するために,モデルに基づく手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bitcoin is currently subject to a significant pay-for-speed trade-off. This is caused by lengthy and highly variable transaction confirmation times, especially during times of congestion. Users can reduce their transaction confirmation times by increasing their transaction fee. In this paper, based on the inner workings of Bitcoin, we propose a model-based approach (based on the Cram\'er-Lundberg model) that can be used to determine the optimal fee, via, for example, the mean or quantiles, and models accurately the confirmation time distribution for a given fee. The proposed model is highly suitable as it arises as the limiting model for the mempool process (that tracks the unconfirmed transactions), which we rigorously show via a fluid limit and we extend this to the diffusion limit (an approximation of the Cram\'er-Lundberg model for fast computations in highly congested instances). We also propose methods (incorporating the real-time data) to estimate the model parameters, thereby combining model and data-driven approaches. The model-based approach is validated on real-world data and the resulting transaction fees outperform, in most instances, the data-driven ones.
- Abstract(参考訳): Bitcoinは現在、大きな対速取引の対象となっている。
これは、特に混雑時に、長く、非常に可変なトランザクション確認時間によって引き起こされる。
ユーザーは取引手数料を増やすことで取引確認時間を短縮できる。
本稿では,Bitcoinの内部動作に基づいて,例えば平均値や量子値を用いて最適な手数料を決定するためのモデルベースアプローチ(Cram\'er-Lundbergモデルに基づく)を提案し,所定の手数料の確認時間分布を正確にモデル化する。
提案モデルは非常に適しており,メムプールプロセスの限界モデル(未確認トランザクションを追尾する)として,流体的限界を通じて厳密に表現し,これを拡散限界に拡張する(高集積インスタンスでの高速計算のためのCram\'er-Lundbergモデルの適用)。
また、モデルパラメータを推定する手法(リアルタイムデータを含む)を提案し、モデルとデータ駆動のアプローチを組み合わせる。
モデルベースのアプローチは、実世界のデータに基づいて検証され、結果として生じるトランザクション手数料は、ほとんどの場合、データ駆動型よりも優れています。
関連論文リスト
- Transaction Fee Estimation in the Bitcoin System [11.065598886291735]
Bitcoinシステムでは、取引手数料はブロックチェーンの確認のインセンティブとなる。
本研究は,新たな取引の取引手数料を推定し,所定の時間内にその確認を支援することに焦点を当てる。
本稿では、トランザクション自体を含む幅広いソースからの知識をニューラルネットワークモデルに統合し、適切なトランザクション料金を見積もるフレームワークFENNを提案する。
論文 参考訳(メタデータ) (2024-05-24T07:27:00Z) - Stochastic Amortization: A Unified Approach to Accelerate Feature and Data Attribution [62.71425232332837]
雑音ラベル付きモデルを用いたトレーニングは安価で驚くほど効果的であることを示す。
このアプローチは、いくつかの特徴属性とデータ評価手法を著しく加速し、しばしば既存のアプローチよりも桁違いにスピードアップする。
論文 参考訳(メタデータ) (2024-01-29T03:42:37Z) - TFMQ-DM: Temporal Feature Maintenance Quantization for Diffusion Models [52.454274602380124]
拡散モデルは非常に時間ステップ$t$に大きく依存し、良好なマルチラウンドデノジングを実現している。
本稿では,時間情報ブロック上に構築した時間的特徴保守量子化(TFMQ)フレームワークを提案する。
先駆的なブロック設計により、時間情報認識再構成(TIAR)と有限集合キャリブレーション(FSC)を考案し、完全な時間的特徴を整列させる。
論文 参考訳(メタデータ) (2023-11-27T12:59:52Z) - Exploring Sparse Expert Models and Beyond [51.90860155810848]
Mixture-of-Experts (MoE) モデルは、無数のパラメータを持つが、一定の計算コストで有望な結果が得られる。
本稿では,専門家を異なるプロトタイプに分割し,上位1ドルのルーティングに$k$を適用する,エキスパートプロトタイピングというシンプルな手法を提案する。
この戦略は, モデル品質を向上させるが, 一定の計算コストを維持するとともに, 大規模モデルのさらなる探索により, 大規模モデルの訓練に有効であることが示唆された。
論文 参考訳(メタデータ) (2021-05-31T16:12:44Z) - Time-Series Imputation with Wasserstein Interpolation for Optimal
Look-Ahead-Bias and Variance Tradeoff [66.59869239999459]
ファイナンスでは、ポートフォリオ最適化モデルをトレーニングする前に、損失の計算を適用することができる。
インキュベーションのために全データセットを使用するルックアヘッドバイアスと、トレーニングデータのみを使用することによるインキュベーションの大きなばらつきとの間には、本質的にトレードオフがある。
提案手法は,提案法における差分とルックアヘッドバイアスのトレードオフを最適に制御するベイズ後部コンセンサス分布である。
論文 参考訳(メタデータ) (2021-02-25T09:05:35Z) - Analysis of Models for Decentralized and Collaborative AI on Blockchain [0.0]
本稿では,自己評価のインセンティブメカニズムを用いる際のベストプラクティスを提案するために,いくつかのモデルと構成を用いて評価する。
モデルがパブリックブロックチェーン上でスマートコントラクトでホストされている場合、データセット毎にいくつかの要因を比較します。
論文 参考訳(メタデータ) (2020-09-14T21:38:55Z) - Bitcoin Transaction Forecasting with Deep Network Representation
Learning [16.715475608359046]
本稿では,Bitcoinトランザクションネットワーク表現の学習にディープニューラルネットワークを活用することで,Bitcoinトランザクション予測モデルであるDLForecastを開発するための新しいアプローチを提案する。
我々は,時間分解型リーチビリティグラフと時間分解型トランザクションパターングラフを構築し,異なるタイプの時空間Bitcoinトランザクションパターンをキャプチャすることを目的とした。
本研究では, 静的グラフベースライン上に構築した予測モデルと比較して, 時空間予測モデルは高速に実行可能であり, 精度を60%以上向上し, 予測性能を50%向上することを示した。
論文 参考訳(メタデータ) (2020-07-15T21:11:32Z) - A Time Series Analysis-Based Stock Price Prediction Using Machine
Learning and Deep Learning Models [0.0]
我々は、統計的、機械学習、ディープラーニングモデルの集合から成り立つ、非常に堅牢で正確な株価予測の枠組みを提示する。
当社は、インドの国立証券取引所(NSE)に上場している非常に有名な企業の、毎日の株価データを5分間隔で収集しています。
統計,機械学習,深層学習を組み合わせたモデル構築の凝集的アプローチは,株価データの揮発性およびランダムな動きパターンから極めて効果的に学習できる,と我々は主張する。
論文 参考訳(メタデータ) (2020-04-17T19:41:22Z) - The Right Tool for the Job: Matching Model and Instance Complexities [62.95183777679024]
NLPモデルが大きくなればなるほど、訓練されたモデルを実行するには、金銭的・環境的なコストを発生させる重要な計算資源が必要である。
我々は、推論中、早期(かつ高速)の"exit"を可能にする文脈表現微調整の修正を提案する。
3つのテキスト分類データセットと2つの自然言語推論ベンチマークの2つのタスクで、5つの異なるデータセットに対して提案した修正を検証した。
論文 参考訳(メタデータ) (2020-04-16T04:28:08Z) - Nonparametric Estimation in the Dynamic Bradley-Terry Model [69.70604365861121]
カーネルのスムース化に依存する新しい推定器を開発し、時間とともにペア比較を前処理する。
モデルに依存しない設定における推定誤差と余剰リスクの両方について時間変化のオラクル境界を導出する。
論文 参考訳(メタデータ) (2020-02-28T21:52:49Z) - A posteriori Trading-inspired Model-free Time Series Segmentation [0.0]
提案手法は, ファインワイドアフィンモデルに適合する一般的なモデルベースボトムアップアプローチと, ガウスモデルに適合する最先端のモデルベーストップダウンアプローチとを比較した。
大規模なデータセットを含む、合成および実世界のデータ上でのパフォーマンスが実証されている。
論文 参考訳(メタデータ) (2019-12-16T06:14:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。