論文の概要: QN-Mixer: A Quasi-Newton MLP-Mixer Model for Sparse-View CT
Reconstruction
- arxiv url: http://arxiv.org/abs/2402.17951v2
- Date: Thu, 29 Feb 2024 14:37:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-01 17:23:39.131308
- Title: QN-Mixer: A Quasi-Newton MLP-Mixer Model for Sparse-View CT
Reconstruction
- Title(参考訳): QN-Mixer:Sparse-View CT再構成のための準ニュートンMLP-Mixerモデル
- Authors: Ishak Ayad, Nicolas Larue, Ma\"i K. Nguyen
- Abstract要約: 準ニュートン法に基づくアルゴリズムQN-Mixerを導入する。
Incept-Mixerは非局所正規化用語として機能する効率的なニューラルネットワークである。
我々のアプローチは知的に情報をサンプリングし、計算要求を大幅に削減する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inverse problems span across diverse fields. In medical contexts, computed
tomography (CT) plays a crucial role in reconstructing a patient's internal
structure, presenting challenges due to artifacts caused by inherently
ill-posed inverse problems. Previous research advanced image quality via
post-processing and deep unrolling algorithms but faces challenges, such as
extended convergence times with ultra-sparse data. Despite enhancements,
resulting images often show significant artifacts, limiting their effectiveness
for real-world diagnostic applications. We aim to explore deep second-order
unrolling algorithms for solving imaging inverse problems, emphasizing their
faster convergence and lower time complexity compared to common first-order
methods like gradient descent. In this paper, we introduce QN-Mixer, an
algorithm based on the quasi-Newton approach. We use learned parameters through
the BFGS algorithm and introduce Incept-Mixer, an efficient neural architecture
that serves as a non-local regularization term, capturing long-range
dependencies within images. To address the computational demands typically
associated with quasi-Newton algorithms that require full Hessian matrix
computations, we present a memory-efficient alternative. Our approach
intelligently downsamples gradient information, significantly reducing
computational requirements while maintaining performance. The approach is
validated through experiments on the sparse-view CT problem, involving various
datasets and scanning protocols, and is compared with post-processing and deep
unrolling state-of-the-art approaches. Our method outperforms existing
approaches and achieves state-of-the-art performance in terms of SSIM and PSNR,
all while reducing the number of unrolling iterations required.
- Abstract(参考訳): 逆問題は様々な分野にまたがる。
医学的な文脈では、ctは患者の内部構造を再構築する上で重要な役割を担っており、本質的に不適切な逆問題に起因するアーティファクトによる課題を呈している。
これまでの研究では、ポストプロセッシングとディープアンロールアルゴリズムによる画質向上が、超疎データによるコンバージェンス時間の延長などの課題に直面している。
拡張にもかかわらず、結果として得られる画像は、しばしば重要なアーティファクトを示し、現実世界の診断アプリケーションでの有効性を制限する。
画像逆問題を解くための深い2次アンロールアルゴリズムを探索し,その収束速度と時間の複雑さを,勾配降下のような一般的な一階法と比較して強調する。
本稿では,準ニュートン法に基づくアルゴリズムであるqn-mixerを提案する。
BFGSアルゴリズムを通じて学習パラメータを使用し、非局所正規化用語として機能し、画像内の長距離依存関係をキャプチャする効率的なニューラルネットワークであるIncept-Mixerを導入する。
完全ヘッセン行列計算を必要とする準ニュートンアルゴリズムに典型的に関連する計算要求に対処するため,メモリ効率の代替案を提案する。
本手法は,勾配情報をインテリジェントにサンプリングし,性能を維持しつつ計算要求を大幅に削減する。
このアプローチは、さまざまなデータセットや走査プロトコルを含むスパースビューCT問題の実験を通じて検証され、後処理や最先端のアプローチと比較される。
提案手法は既存の手法より優れ,SSIMとPSNRの両面において最先端の性能を実現し,必要なアンロールイテレーションの回数を削減した。
関連論文リスト
- Robust plug-and-play methods for highly accelerated non-Cartesian MRI reconstruction [2.724485028696543]
マルチコイルデータからクリーンでノイズのないMRI信号を生成するための,教師なし事前処理パイプラインを提案する。
プレコンディショニング技術と組み合わせることで,高品質なデータに対する堅牢なMRI再構成を実現する。
論文 参考訳(メタデータ) (2024-11-04T10:27:57Z) - Plug-and-Play image restoration with Stochastic deNOising REgularization [8.678250057211368]
SNORE(Denoising Regularization)と呼ばれる新しいフレームワークを提案する。
SNOREは、適切なレベルのノイズのある画像のみにデノイザを適用する。
これは明示的な正則化に基づいており、逆問題を解決するための降下につながる。
論文 参考訳(メタデータ) (2024-02-01T18:05:47Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) は効率的で教師なしの後方サンプリング手法である。
DDRMの汎用性を、超高解像度、デブロアリング、インペイント、カラー化のためにいくつかの画像データセットに示す。
論文 参考訳(メタデータ) (2022-01-27T20:19:07Z) - Recurrent Variational Network: A Deep Learning Inverse Problem Solver
applied to the task of Accelerated MRI Reconstruction [3.058685580689605]
本稿では,MRIの高速化作業に応用した,ディープラーニングに基づく逆問題解法を提案する。
RecurrentVarNetは複数のブロックから構成されており、それぞれが逆問題を解決するための勾配降下アルゴリズムの1つのアンロール反復に責任を負っている。
提案手法は,公共のマルチチャネル脳データセットから得られた5倍および10倍の加速データに対して,定性的かつ定量的な再構築結果の新たな状態を実現する。
論文 参考訳(メタデータ) (2021-11-18T11:44:04Z) - Deep Learning Adapted Acceleration for Limited-view Photoacoustic
Computed Tomography [1.8830359888767887]
光音響計算トモグラフィ(PACT)は、PA信号検出のための超音波トランスデューサアレイでターゲットを照らすために、焦点のない大面積の光を使用する。
限定ビュー問題は、幾何学的条件の制限により、PACTの低画質の画像を引き起こす可能性がある。
数学的変動モデルとディープラーニングを組み合わせたモデルベース手法を提案する。
論文 参考訳(メタデータ) (2021-11-08T02:05:58Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
スペクトルctを用いたマルチマテリアル画像再構成のためのモデルベース最大後課題の解決法を提案する。
特に,プラグイン画像復号化機能に基づく正規化最適化問題について提案する。
スペクトルct材料分解の数値的および実験的結果を示す。
論文 参考訳(メタデータ) (2021-03-25T15:20:10Z) - Learned Block Iterative Shrinkage Thresholding Algorithm for
Photothermal Super Resolution Imaging [52.42007686600479]
深層ニューラルネットワークに展開する反復アルゴリズムを用いて,学習したブロックスパース最適化手法を提案する。
本稿では、正規化パラメータの選択を学ぶことができる学習ブロック反復収縮しきい値アルゴリズムを使用することの利点を示す。
論文 参考訳(メタデータ) (2020-12-07T09:27:16Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
疎信号回復問題に対するエンドツーエンドの訓練可能なディープラーニングアーキテクチャを提案する。
提案手法は,出力するレイヤ数を学習し,各タスクのネットワーク深さを推論フェーズで動的に調整する。
論文 参考訳(メタデータ) (2020-10-29T06:32:53Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
本稿では,一対の相補的な旅先を含むLRD画像モデルを提案する。
次に、画像CSのためのRDモデルに基づく新しいハイブリッド・プラグイン・アンド・プレイ・フレームワークを提案する。
そこで,提案したH-based image CS問題の解法として,単純で効果的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-16T08:17:44Z) - Learned Spectral Computed Tomography [0.0]
スペクトル光子結合型CTのためのディープラーニングイメージング法を提案する。
この方法は、ケース固有データを用いて訓練された2段階の学習された原始双対アルゴリズムの形を取る。
提案手法は, 限られたデータの場合であっても, 高速再構成機能と高速撮像性能により特徴付けられる。
論文 参考訳(メタデータ) (2020-03-09T13:39:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。