論文の概要: Multistatic-Radar RCS-Signature Recognition of Aerial Vehicles: A
Bayesian Fusion Approach
- arxiv url: http://arxiv.org/abs/2402.17987v1
- Date: Wed, 28 Feb 2024 02:11:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-29 16:33:06.980121
- Title: Multistatic-Radar RCS-Signature Recognition of Aerial Vehicles: A
Bayesian Fusion Approach
- Title(参考訳): 航空機のマルチスタティックラダーrcs信号認識:ベイズ核融合アプローチ
- Authors: Michael Potter, Murat Akcakaya, Marius Necsoiu, Gunar Schirner, Deniz
Erdogmus, Tales Imbiriba
- Abstract要約: 無人航空機(UAV)用のレーダー自動目標認識(RATR)は、電磁波(EMW)を送信し、受信したレーダーエコーに対して目標型認識を行う。
これまでの研究では、RATRにおけるモノスタティックレーダよりも、マルチスタティックレーダの構成の利点を強調していた。
本稿では,複数のレーダからの分類確率ベクトルを集約するために,OBF(Optimal Bayesian Fusion)を用いた完全ベイズRATRフレームワークを提案する。
- 参考スコア(独自算出の注目度): 11.558808130330362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radar Automated Target Recognition (RATR) for Unmanned Aerial Vehicles (UAVs)
involves transmitting Electromagnetic Waves (EMWs) and performing target type
recognition on the received radar echo, crucial for defense and aerospace
applications. Previous studies highlighted the advantages of multistatic radar
configurations over monostatic ones in RATR. However, fusion methods in
multistatic radar configurations often suboptimally combine classification
vectors from individual radars probabilistically. To address this, we propose a
fully Bayesian RATR framework employing Optimal Bayesian Fusion (OBF) to
aggregate classification probability vectors from multiple radars. OBF, based
on expected 0-1 loss, updates a Recursive Bayesian Classification (RBC)
posterior distribution for target UAV type, conditioned on historical
observations across multiple time steps. We evaluate the approach using
simulated random walk trajectories for seven drones, correlating target aspect
angles to Radar Cross Section (RCS) measurements in an anechoic chamber.
Comparing against single radar Automated Target Recognition (ATR) systems and
suboptimal fusion methods, our empirical results demonstrate that the OBF
method integrated with RBC significantly enhances classification accuracy
compared to other fusion methods and single radar configurations.
- Abstract(参考訳): 無人航空機(UAV)用のレーダー自動目標認識(RATR)は、電磁波(EMW)を送信し、受信したレーダーエコーで目標型認識を行う。
以前の研究では、ratrのモノスタティックレーダよりもマルチスタティックレーダ構成のアドバンテージを強調した。
しかし、マルチスタティックレーダ構成の融合法は、個々のレーダの分類ベクトルを確率的に組み合わせることが多い。
そこで我々は,複数のレーダからの分類確率ベクトルを集約するために,OBF(Optimal Bayesian Fusion)を用いた完全ベイズRATRフレームワークを提案する。
OBFは、予想される0-1の損失に基づいて、複数の時間ステップにわたる歴史的観測に基づいて、ターゲットUAVタイプの再帰ベイズ分類(RBC)後部分布を更新する。
本研究では,無響室におけるレーダ断面積(rcs)測定と目標アスペクト角を関連付けた7機のランダム歩行軌跡シミュレーションを用いて,そのアプローチを評価した。
単一レーダ自動目標認識(ATR)システムと準最適フュージョン法との比較により,RBCと統合されたOBF法は,他のフュージョン法や単一レーダ構成と比較して,分類精度を著しく向上することを示した。
関連論文リスト
- radarODE: An ODE-Embedded Deep Learning Model for Contactless ECG Reconstruction from Millimeter-Wave Radar [16.52097542165782]
レーダノードと呼ばれる新しいディープラーニングフレームワークは、レーダ信号から抽出された時間的および形態的特徴を融合させ、ECGを生成するように設計されている。
レーダノードは,検出率の欠落,ルート平均二乗誤差,ピアソン相関係数の9%,16%,19%で,ベンチマークよりも優れた性能を実現している。
論文 参考訳(メタデータ) (2024-08-03T06:07:15Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
本稿では,アクティブレーダイメージア用に設計されたニューラルシーン再構成手法であるRadar Fieldsを紹介する。
提案手法では,暗黙的ニューラルジオメトリとリフレクタンスモデルを用いて,暗黙的な物理インフォームドセンサモデルを構築し,生のレーダ測定を直接合成する。
本研究では,密集した車両やインフラを備えた都市景観を含む,多様な屋外シナリオにおける手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-07T20:44:48Z) - Towards Dense and Accurate Radar Perception Via Efficient Cross-Modal Diffusion Model [4.269423698485249]
本稿では, クロスモーダル学習による高密度かつ高精度なミリ波レーダポイント雲構築手法を提案する。
具体的には, 2組の生レーダデータからLiDARのような点雲を予測するために, 生成モデルにおける最先端性能を有する拡散モデルを提案する。
提案手法をベンチマーク比較と実世界の実験により検証し,その優れた性能と一般化能力を実証した。
論文 参考訳(メタデータ) (2024-03-13T12:20:20Z) - Multi-stage Learning for Radar Pulse Activity Segmentation [51.781832424705094]
無線信号認識は電子戦において重要な機能である。
電子戦システムでは、レーダパルス活動の正確な識別と位置決めが要求される。
ディープラーニングに基づくレーダーパルス活動認識法は、ほとんど未検討のままである。
論文 参考訳(メタデータ) (2023-12-15T01:56:27Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
本稿では,既存のレーダ信号処理パイプラインをスキップするEchoFusionという新しい手法を提案する。
具体的には、まずBird's Eye View (BEV)クエリを生成し、次にレーダーから他のセンサーとフューズに対応するスペクトル特徴を取ります。
論文 参考訳(メタデータ) (2023-07-31T09:53:50Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
本稿では,レーダ検出を点雲に展開する深層学習手法を提案する。
このアルゴリズムは、距離依存クラスタリングと入力点雲の事前処理により、レーダ固有の特性に適応する。
我々のネットワークは、レーダポイント雲のセマンティックセグメンテーションのタスクにおいて、PointNet++に基づく最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-05-22T07:09:35Z) - Identifying Coordination in a Cognitive Radar Network -- A
Multi-Objective Inverse Reinforcement Learning Approach [30.65529797672378]
本稿では,レーダ間のコーディネーションを検出するために,新しい多目的逆強化学習手法を提案する。
また、多目的最適化システムの逆検出と学習に関するより一般的な問題にも適用できる。
論文 参考訳(メタデータ) (2022-11-13T17:27:39Z) - RaLiBEV: Radar and LiDAR BEV Fusion Learning for Anchor Box Free Object
Detection Systems [13.046347364043594]
自動運転では、LiDARとレーダーは環境認識に不可欠である。
最近の最先端の研究は、レーダーとLiDARの融合が悪天候の堅牢な検出につながることを明らかにしている。
鳥眼ビュー融合学習に基づくアンカーボックスフリー物体検出システムを提案する。
論文 参考訳(メタデータ) (2022-11-11T10:24:42Z) - Waveform Selection for Radar Tracking in Target Channels With Memory via
Universal Learning [14.796960833031724]
シーンの状態に関する部分的な情報を用いてレーダーの波形を適応させることは、多くの現実的なシナリオにおいてパフォーマンス上の利点をもたらすことが示されている。
本研究では,レーダ環境インタフェースの圧縮モデルを構築するレーダシステムについて,文脈木として検討する。
提案手法はシミュレーション実験で検証され、2つの最先端波形選択方式による追従性能の向上が示されている。
論文 参考訳(メタデータ) (2021-08-02T21:27:56Z) - Automotive Radar Interference Mitigation with Unfolded Robust PCA based
on Residual Overcomplete Auto-Encoder Blocks [88.46770122522697]
自律走行では、レーダーシステムは道路上の他の車両のような標的を検出する上で重要な役割を果たす。
自動車用レーダー干渉緩和のための深層学習手法は、目標の振幅を確実に推定できるが、それぞれの目標の位相を回復できない。
干渉の有無で振幅と位相の両方を推定できる効率的かつ効率的な手法を提案する。
論文 参考訳(メタデータ) (2020-10-14T09:41:06Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
本稿では,ディープニューラルネットワークを用いた単眼画像とレーダ点の融合により,より正確な深度推定を実現する可能性を検討する。
レーダ測定で発生するノイズが,既存の融合法の適用を妨げている主要な理由の1つであることが判明した。
実験はnuScenesデータセット上で行われ、カメラ、レーダー、LiDARの記録を様々な場面と気象条件で記録する最初のデータセットの1つである。
論文 参考訳(メタデータ) (2020-09-30T19:01:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。