論文の概要: Do Large Language Models Mirror Cognitive Language Processing?
- arxiv url: http://arxiv.org/abs/2402.18023v2
- Date: Tue, 28 May 2024 05:51:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 01:18:48.185709
- Title: Do Large Language Models Mirror Cognitive Language Processing?
- Title(参考訳): 大規模言語モデルは認知言語処理をミラー化するか?
- Authors: Yuqi Ren, Renren Jin, Tongxuan Zhang, Deyi Xiong,
- Abstract要約: 大規模言語モデル(LLM)は、テキスト理解と論理的推論において顕著な能力を示した。
認知科学において、脳認知処理信号は典型的には人間の言語処理を研究するために使用される。
我々はRepresentational similarity Analysis (RSA) を用いて、23個の主要LDMとfMRI信号のアライメントを測定する。
- 参考スコア(独自算出の注目度): 43.68923267228057
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable abilities in text comprehension and logical reasoning, indicating that the text representations learned by LLMs can facilitate their language processing capabilities. In cognitive science, brain cognitive processing signals are typically utilized to study human language processing. Therefore, it is natural to ask how well the text embeddings from LLMs align with the brain cognitive processing signals, and how training strategies affect the LLM-brain alignment? In this paper, we employ Representational Similarity Analysis (RSA) to measure the alignment between 23 mainstream LLMs and fMRI signals of the brain to evaluate how effectively LLMs simulate cognitive language processing. We empirically investigate the impact of various factors (e.g., pre-training data size, model scaling, alignment training, and prompts) on such LLM-brain alignment. Experimental results indicate that pre-training data size and model scaling are positively correlated with LLM-brain similarity, and alignment training can significantly improve LLM-brain similarity. Explicit prompts contribute to the consistency of LLMs with brain cognitive language processing, while nonsensical noisy prompts may attenuate such alignment. Additionally, the performance of a wide range of LLM evaluations (e.g., MMLU, Chatbot Arena) is highly correlated with the LLM-brain similarity.
- Abstract(参考訳): 大規模言語モデル(LLM)はテキスト理解と論理的推論において顕著な能力を示しており、LLMによって学習されたテキスト表現が言語処理能力を促進することを示唆している。
認知科学において、脳認知処理信号は典型的には人間の言語処理を研究するために使用される。
したがって、LLMからのテキスト埋め込みが脳認知処理信号とどの程度うまく一致し、トレーニング戦略がLLM脳のアライメントにどのように影響するかを問うことは自然である。
本稿では、Representational similarity Analysis (RSA) を用いて、23のメインストリームLLMとfMRI信号のアライメントを測定し、LLMが認知言語処理をいかに効果的にシミュレートするかを評価する。
本研究では,LLM脳アライメントに対する各種因子(例えば,事前学習データサイズ,モデルスケーリング,アライメントトレーニング,プロンプト)の影響を実験的に検討する。
実験結果から、事前学習データサイズとモデルスケーリングはLLM-脳類似性と正の相関を示し、アライメントトレーニングはLLM-脳類似性を大幅に改善することが示された。
明示的プロンプトはLLMの脳認知言語処理との整合性に寄与するが、非感覚的なノイズ的プロンプトはそのようなアライメントを弱める可能性がある。
さらに, LLM評価(例えばMMLU, Chatbot Arena)の性能は, LLM-Brain類似度と高い相関性を示した。
関連論文リスト
- Large Language Models are Interpretable Learners [53.56735770834617]
本稿では,Large Language Models(LLM)とシンボルプログラムの組み合わせによって,表現性と解釈可能性のギャップを埋めることができることを示す。
自然言語プロンプトを持つ事前訓練されたLLMは、生の入力を自然言語の概念に変換することができる解釈可能な膨大なモジュールセットを提供する。
LSPが学んだ知識は自然言語の記述と記号規則の組み合わせであり、人間(解釈可能)や他のLLMに容易に転送できる。
論文 参考訳(メタデータ) (2024-06-25T02:18:15Z) - Brain-Like Language Processing via a Shallow Untrained Multihead Attention Network [16.317199232071232]
大規模言語モデル(LLM)は、人間の言語システムの効果的なモデルであることが示されている。
本研究では、未学習モデルの驚くほどのアライメントを駆動する重要なアーキテクチャコンポーネントについて検討する。
論文 参考訳(メタデータ) (2024-06-21T12:54:03Z) - What Are Large Language Models Mapping to in the Brain? A Case Against Over-Reliance on Brain Scores [1.8175282137722093]
大規模言語モデル(LLM)の内部表現は最先端の脳スコアを達成し、人間の言語処理と計算原理を共有するという憶測に繋がる。
本稿では、LLM-to-Brainマッピングに関する衝撃的な研究で使用される3つのニューラルデータセットを分析し、参加者が短いパスを読み取るfMRIデータセットに特に焦点をあてる。
このデータセット上で訓練されたLLMの脳のスコアは、文の長さ、位置、代名詞による単語の埋め込みによって大きく説明できる。
論文 参考訳(メタデータ) (2024-06-03T17:13:27Z) - Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL [78.80673954827773]
大きな言語モデル(LLM)は、言語理解を高め、解釈可能性を改善し、バイアスを減らすために構造化セマンティクスをキャプチャする上で重要な役割を果たす。
セマンティック・ロール・ラベルリング(SRL)を,構造化意味論を抽出するLLMの能力を探るための基本課題として用いることを提案する。
LLMは実際にセマンティック構造をキャプチャすることができ、スケールアップは常にポテンシャルを反映するわけではない。
エラーのかなりの重複は、LLMと訓練されていない人間の両方によって行われ、全てのエラーの約30%を占めることに私たちは驚いています。
論文 参考訳(メタデータ) (2024-05-10T11:44:05Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - Contextual Feature Extraction Hierarchies Converge in Large Language
Models and the Brain [12.92793034617015]
大規模言語モデル(LLM)がベンチマークタスクで高いパフォーマンスを達成するにつれ、より脳に近いものになることを示す。
また、モデルの性能と脳の類似性を改善する上で、文脈情報の重要性を示す。
論文 参考訳(メタデータ) (2024-01-31T08:48:35Z) - Do LLMs Dream of Ontologies? [15.049502693786698]
大規模言語モデル(LLM)は、最近、自動テキスト理解と生成に革命をもたらした。
本稿では,汎用的な事前学習 LLM が,どの程度の知識を持つかを検討する。
論文 参考訳(メタデータ) (2024-01-26T15:10:23Z) - Instruction-tuning Aligns LLMs to the Human Brain [19.450164922129723]
命令チューニングが大規模言語モデルと人間の言語処理機構の整合性に及ぼす影響について検討する。
インストラクションチューニングは一般に脳のアライメントを高めるが、行動アライメントに類似した影響はない。
LLMにおける世界知識を符号化するメカニズムは、人間の脳への表現的アライメントを改善することも示唆している。
論文 参考訳(メタデータ) (2023-12-01T13:31:02Z) - Divergences between Language Models and Human Brains [63.405788999891335]
最近の研究は、言語モデルの内部表現(LM)を用いて脳信号が効果的に予測できることを示唆している。
我々は、LMと人間が言語をどのように表現し、使用するかに明確な違いがあることを示します。
我々は、社会的・情緒的知性と身体的常識という、LMによってうまく捉えられていない2つの領域を識別する。
論文 参考訳(メタデータ) (2023-11-15T19:02:40Z) - ChatABL: Abductive Learning via Natural Language Interaction with
ChatGPT [72.83383437501577]
大規模言語モデル(LLM)は、最近数学的な能力において大きな可能性を証明している。
LLMは現在、認識、言語理解、推論能力のブリッジングに困難を抱えている。
本稿では, LLMを帰納学習フレームワークに統合する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-04-21T16:23:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。