Making Them Ask and Answer: Jailbreaking Large Language Models in Few Queries via Disguise and Reconstruction
- URL: http://arxiv.org/abs/2402.18104v2
- Date: Mon, 10 Jun 2024 11:20:43 GMT
- Title: Making Them Ask and Answer: Jailbreaking Large Language Models in Few Queries via Disguise and Reconstruction
- Authors: Tong Liu, Yingjie Zhang, Zhe Zhao, Yinpeng Dong, Guozhu Meng, Kai Chen,
- Abstract summary: We pioneer a theoretical foundation in LLMs security by identifying bias vulnerabilities within the safety fine-tuning.
We design a black-box jailbreak method named DRA, which conceals harmful instructions through disguise.
We evaluate DRA across various open-source and closed-source models, showcasing state-of-the-art jailbreak success rates and attack efficiency.
- Score: 31.171418109420276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, large language models (LLMs) have demonstrated notable success across various tasks, but the trustworthiness of LLMs is still an open problem. One specific threat is the potential to generate toxic or harmful responses. Attackers can craft adversarial prompts that induce harmful responses from LLMs. In this work, we pioneer a theoretical foundation in LLMs security by identifying bias vulnerabilities within the safety fine-tuning and design a black-box jailbreak method named DRA (Disguise and Reconstruction Attack), which conceals harmful instructions through disguise and prompts the model to reconstruct the original harmful instruction within its completion. We evaluate DRA across various open-source and closed-source models, showcasing state-of-the-art jailbreak success rates and attack efficiency. Notably, DRA boasts a 91.1% attack success rate on OpenAI GPT-4 chatbot.
Related papers
- Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models [53.580928907886324]
Reasoning-Augmented Conversation is a novel multi-turn jailbreak framework.
It reformulates harmful queries into benign reasoning tasks.
We show that RACE achieves state-of-the-art attack effectiveness in complex conversational scenarios.
arXiv Detail & Related papers (2025-02-16T09:27:44Z) - Making Them a Malicious Database: Exploiting Query Code to Jailbreak Aligned Large Language Models [44.27350994698781]
We propose a novel framework to examine the generalizability of safety alignment.
By treating LLMs as knowledge databases, we translate malicious queries in natural language into structured non-natural query language.
We conduct extensive experiments on mainstream LLMs, and the results show that QueryAttack can achieve high attack success rates.
arXiv Detail & Related papers (2025-02-13T19:13:03Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
We introduce Layer-AdvPatcher, a methodology designed to defend against jailbreak attacks.
We use an unlearning strategy to patch specific layers within large language models through self-augmented datasets.
Our framework reduces the harmfulness and attack success rate of jailbreak attacks.
arXiv Detail & Related papers (2025-01-05T19:06:03Z) - DROJ: A Prompt-Driven Attack against Large Language Models [0.0]
Large Language Models (LLMs) have demonstrated exceptional capabilities across various natural language processing tasks.
Despite massive alignment efforts, LLMs remain susceptible to adversarial jailbreak attacks.
We introduce a novel approach, Directed Rrepresentation Optimization Jailbreak (DROJ)
arXiv Detail & Related papers (2024-11-14T01:48:08Z) - SQL Injection Jailbreak: A Structural Disaster of Large Language Models [71.55108680517422]
We introduce a novel jailbreak method, which targets the external properties of LLMs.
By injecting jailbreak information into user prompts, SIJ successfully induces the model to output harmful content.
We propose a simple defense method called Self-Reminder-Key to counter SIJ.
arXiv Detail & Related papers (2024-11-03T13:36:34Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
We propose a novel method that "translates" garbled adversarial prompts into coherent and human-readable natural language adversarial prompts.
It also offers a new approach to discovering effective designs for jailbreak prompts, advancing the understanding of jailbreak attacks.
Our method achieves over 90% attack success rates against Llama-2-Chat models on AdvBench, despite their outstanding resistance to jailbreak attacks.
arXiv Detail & Related papers (2024-10-15T06:31:04Z) - Probing the Safety Response Boundary of Large Language Models via Unsafe Decoding Path Generation [44.09578786678573]
Large Language Models (LLMs) are implicit troublemakers.
LLMs could be used to gather harmful data or launch covert attacks.
We name this decoding strategy: Jailbreak Value Decoding (JVD)
arXiv Detail & Related papers (2024-08-20T09:11:21Z) - BaThe: Defense against the Jailbreak Attack in Multimodal Large Language Models by Treating Harmful Instruction as Backdoor Trigger [67.75420257197186]
In this work, we propose $textbfBaThe, a simple yet effective jailbreak defense mechanism.
Jailbreak backdoor attack uses harmful instructions combined with manually crafted strings as triggers to make the backdoored model generate prohibited responses.
We assume that harmful instructions can function as triggers, and if we alternatively set rejection responses as the triggered response, the backdoored model then can defend against jailbreak attacks.
arXiv Detail & Related papers (2024-08-17T04:43:26Z) - LLMs can be Dangerous Reasoners: Analyzing-based Jailbreak Attack on Large Language Models [21.02295266675853]
Existing jailbreak methods suffer from two main limitations: reliance on complicated prompt engineering and iterative optimization.
We propose an efficient jailbreak attack method, Analyzing-based Jailbreak (ABJ), which leverages the advanced reasoning capability of LLMs to autonomously generate harmful content.
arXiv Detail & Related papers (2024-07-23T06:14:41Z) - SpeechGuard: Exploring the Adversarial Robustness of Multimodal Large Language Models [34.557309967708406]
In this work, we investigate the potential vulnerabilities of such instruction-following speech-language models to adversarial attacks and jailbreaking.
We design algorithms that can generate adversarial examples to jailbreak SLMs in both white-box and black-box attack settings without human involvement.
Our models, trained on dialog data with speech instructions, achieve state-of-the-art performance on spoken question-answering task, scoring over 80% on both safety and helpfulness metrics.
arXiv Detail & Related papers (2024-05-14T04:51:23Z) - Shadow Alignment: The Ease of Subverting Safely-Aligned Language Models [102.63973600144308]
Open-source large language models can be easily subverted to generate harmful content.
Experiments across 8 models released by 5 different organizations demonstrate the effectiveness of shadow alignment attack.
This study serves as a clarion call for a collective effort to overhaul and fortify the safety of open-source LLMs against malicious attackers.
arXiv Detail & Related papers (2023-10-04T16:39:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.