Balancing Act: Distribution-Guided Debiasing in Diffusion Models
- URL: http://arxiv.org/abs/2402.18206v3
- Date: Wed, 29 May 2024 13:33:57 GMT
- Title: Balancing Act: Distribution-Guided Debiasing in Diffusion Models
- Authors: Rishubh Parihar, Abhijnya Bhat, Abhipsa Basu, Saswat Mallick, Jogendra Nath Kundu, R. Venkatesh Babu,
- Abstract summary: Diffusion Models (DMs) have emerged as powerful generative models with unprecedented image generation capability.
DMs reflect the biases present in the training datasets.
We present a method for debiasing DMs without relying on additional data or model retraining.
- Score: 31.38505986239798
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion Models (DMs) have emerged as powerful generative models with unprecedented image generation capability. These models are widely used for data augmentation and creative applications. However, DMs reflect the biases present in the training datasets. This is especially concerning in the context of faces, where the DM prefers one demographic subgroup vs others (eg. female vs male). In this work, we present a method for debiasing DMs without relying on additional data or model retraining. Specifically, we propose Distribution Guidance, which enforces the generated images to follow the prescribed attribute distribution. To realize this, we build on the key insight that the latent features of denoising UNet hold rich demographic semantics, and the same can be leveraged to guide debiased generation. We train Attribute Distribution Predictor (ADP) - a small mlp that maps the latent features to the distribution of attributes. ADP is trained with pseudo labels generated from existing attribute classifiers. The proposed Distribution Guidance with ADP enables us to do fair generation. Our method reduces bias across single/multiple attributes and outperforms the baseline by a significant margin for unconditional and text-conditional diffusion models. Further, we present a downstream task of training a fair attribute classifier by rebalancing the training set with our generated data.
Related papers
- Efficient Distribution Matching of Representations via Noise-Injected Deep InfoMax [73.03684002513218]
We enhance Deep InfoMax (DIM) to enable automatic matching of learned representations to a selected prior distribution.
We show that such modification allows for learning uniformly and normally distributed representations.
The results indicate a moderate trade-off between the performance on the downstream tasks and quality of DM.
arXiv Detail & Related papers (2024-10-09T15:40:04Z) - Pruning then Reweighting: Towards Data-Efficient Training of Diffusion Models [33.09663675904689]
We investigate efficient diffusion training from the perspective of dataset pruning.
Inspired by the principles of data-efficient training for generative models such as generative adversarial networks (GANs), we first extend the data selection scheme used in GANs to DM training.
To further improve the generation performance, we employ a class-wise reweighting approach.
arXiv Detail & Related papers (2024-09-27T20:21:19Z) - Efficient Shapley Values for Attributing Global Properties of Diffusion Models to Data Group [13.761241561734547]
We develop a method to efficiently estimate Shapley values by leveraging model pruning and fine-tuning.
We empirically demonstrate the utility of our method with three use cases: (i) global image quality for a DDPM trained on a CIFAR dataset, (ii) demographic diversity for an LDM trained on CelebA-HQ, and (iii) overall aesthetic quality for a Stable Diffusion model LoRA-finetuned on Post-Impressionist artworks.
arXiv Detail & Related papers (2024-06-09T17:42:09Z) - Distributionally Generative Augmentation for Fair Facial Attribute Classification [69.97710556164698]
Facial Attribute Classification (FAC) holds substantial promise in widespread applications.
FAC models trained by traditional methodologies can be unfair by exhibiting accuracy inconsistencies across varied data subpopulations.
This work proposes a novel, generation-based two-stage framework to train a fair FAC model on biased data without additional annotation.
arXiv Detail & Related papers (2024-03-11T10:50:53Z) - Gaussian Harmony: Attaining Fairness in Diffusion-based Face Generation
Models [31.688873613213392]
Diffusion models amplify the bias in the generation process, leading to an imbalance in distribution of sensitive attributes such as age, gender and race.
We mitigate the bias by localizing the means of the facial attributes in the latent space of the diffusion model using Gaussian mixture models (GMM)
Our results demonstrate that our approach leads to a more fair data generation in terms of representational fairness while preserving the quality of generated samples.
arXiv Detail & Related papers (2023-12-21T20:06:15Z) - Fair GANs through model rebalancing for extremely imbalanced class
distributions [5.463417677777276]
We present an approach to construct an unbiased generative adversarial network (GAN) from an existing biased GAN.
We show results for the StyleGAN2 models while training on the Flickr Faces High Quality (FFHQ) dataset for racial fairness.
We further validate our approach by applying it to an imbalanced CIFAR10 dataset which is also twice as large.
arXiv Detail & Related papers (2023-08-16T19:20:06Z) - Diff-Instruct: A Universal Approach for Transferring Knowledge From
Pre-trained Diffusion Models [77.83923746319498]
We propose a framework called Diff-Instruct to instruct the training of arbitrary generative models.
We show that Diff-Instruct results in state-of-the-art single-step diffusion-based models.
Experiments on refining GAN models show that the Diff-Instruct can consistently improve the pre-trained generators of GAN models.
arXiv Detail & Related papers (2023-05-29T04:22:57Z) - Analyzing Bias in Diffusion-based Face Generation Models [75.80072686374564]
Diffusion models are increasingly popular in synthetic data generation and image editing applications.
We investigate the presence of bias in diffusion-based face generation models with respect to attributes such as gender, race, and age.
We examine how dataset size affects the attribute composition and perceptual quality of both diffusion and Generative Adversarial Network (GAN) based face generation models.
arXiv Detail & Related papers (2023-05-10T18:22:31Z) - Class-Balancing Diffusion Models [57.38599989220613]
Class-Balancing Diffusion Models (CBDM) are trained with a distribution adjustment regularizer as a solution.
Our method benchmarked the generation results on CIFAR100/CIFAR100LT dataset and shows outstanding performance on the downstream recognition task.
arXiv Detail & Related papers (2023-04-30T20:00:14Z) - Self-Conditioned Generative Adversarial Networks for Image Editing [61.50205580051405]
Generative Adversarial Networks (GANs) are susceptible to bias, learned from either the unbalanced data, or through mode collapse.
We argue that this bias is responsible not only for fairness concerns, but that it plays a key role in the collapse of latent-traversal editing methods when deviating away from the distribution's core.
arXiv Detail & Related papers (2022-02-08T18:08:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.