Efficient Shapley Values for Attributing Global Properties of Diffusion Models to Data Group
- URL: http://arxiv.org/abs/2407.03153v1
- Date: Sun, 9 Jun 2024 17:42:09 GMT
- Title: Efficient Shapley Values for Attributing Global Properties of Diffusion Models to Data Group
- Authors: Chris Lin, Mingyu Lu, Chanwoo Kim, Su-In Lee,
- Abstract summary: We develop a method to efficiently estimate Shapley values by leveraging model pruning and fine-tuning.
We empirically demonstrate the utility of our method with three use cases: (i) global image quality for a DDPM trained on a CIFAR dataset, (ii) demographic diversity for an LDM trained on CelebA-HQ, and (iii) overall aesthetic quality for a Stable Diffusion model LoRA-finetuned on Post-Impressionist artworks.
- Score: 13.761241561734547
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As diffusion models are deployed in real-world settings, data attribution is needed to ensure fair acknowledgment for contributors of high-quality training data and to identify sources of harmful content. Previous work focuses on identifying individual training samples important for the generation of a given image. However, instead of focusing on a given generated image, some use cases require understanding global properties of the distribution learned by a diffusion model (e.g., demographic diversity). Furthermore, training data for diffusion models are often contributed in groups rather than separately (e.g., multiple artworks from the same artist). Hence, here we tackle the problem of attributing global properties of diffusion models to groups of training data. Specifically, we develop a method to efficiently estimate Shapley values by leveraging model pruning and fine-tuning. We empirically demonstrate the utility of our method with three use cases: (i) global image quality for a DDPM trained on a CIFAR dataset, (ii) demographic diversity for an LDM trained on CelebA-HQ, and (iii) overall aesthetic quality for a Stable Diffusion model LoRA-finetuned on Post-Impressionist artworks.
Related papers
- Balancing Act: Distribution-Guided Debiasing in Diffusion Models [31.38505986239798]
Diffusion Models (DMs) have emerged as powerful generative models with unprecedented image generation capability.
DMs reflect the biases present in the training datasets.
We present a method for debiasing DMs without relying on additional data or model retraining.
arXiv Detail & Related papers (2024-02-28T09:53:17Z) - The Journey, Not the Destination: How Data Guides Diffusion Models [75.19694584942623]
Diffusion models trained on large datasets can synthesize photo-realistic images of remarkable quality and diversity.
We propose a framework that: (i) provides a formal notion of data attribution in the context of diffusion models, and (ii) allows us to counterfactually validate such attributions.
arXiv Detail & Related papers (2023-12-11T08:39:43Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Class-Balancing Diffusion Models [57.38599989220613]
Class-Balancing Diffusion Models (CBDM) are trained with a distribution adjustment regularizer as a solution.
Our method benchmarked the generation results on CIFAR100/CIFAR100LT dataset and shows outstanding performance on the downstream recognition task.
arXiv Detail & Related papers (2023-04-30T20:00:14Z) - Extracting Training Data from Diffusion Models [77.11719063152027]
We show that diffusion models memorize individual images from their training data and emit them at generation time.
With a generate-and-filter pipeline, we extract over a thousand training examples from state-of-the-art models.
We train hundreds of diffusion models in various settings to analyze how different modeling and data decisions affect privacy.
arXiv Detail & Related papers (2023-01-30T18:53:09Z) - Diffusion Art or Digital Forgery? Investigating Data Replication in
Diffusion Models [53.03978584040557]
We study image retrieval frameworks that enable us to compare generated images with training samples and detect when content has been replicated.
Applying our frameworks to diffusion models trained on multiple datasets including Oxford flowers, Celeb-A, ImageNet, and LAION, we discuss how factors such as training set size impact rates of content replication.
arXiv Detail & Related papers (2022-12-07T18:58:02Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.