Beyond English: The Impact of Prompt Translation Strategies across Languages and Tasks in Multilingual LLMs
- URL: http://arxiv.org/abs/2502.09331v1
- Date: Thu, 13 Feb 2025 13:49:30 GMT
- Title: Beyond English: The Impact of Prompt Translation Strategies across Languages and Tasks in Multilingual LLMs
- Authors: Itai Mondshine, Tzuf Paz-Argaman, Reut Tsarfaty,
- Abstract summary: We evaluate pre-translation strategies across 35 languages covering both low and high-resource languages.
Our experiments show the impact of factors as similarity to English, translation quality and the size of pre-trained data, on the model performance with pre-translation.
- Score: 13.458891794688551
- License:
- Abstract: Despite advances in the multilingual capabilities of Large Language Models (LLMs) across diverse tasks, English remains the dominant language for LLM research and development. So, when working with a different language, this has led to the widespread practice of pre-translation, i.e., translating the task prompt into English before inference. Selective pre-translation, a more surgical approach, focuses on translating specific prompt components. However, its current use is sporagic and lacks a systematic research foundation. Consequently, the optimal pre-translation strategy for various multilingual settings and tasks remains unclear. In this work, we aim to uncover the optimal setup for pre-translation by systematically assessing its use. Specifically, we view the prompt as a modular entity, composed of four functional parts: instruction, context, examples, and output, either of which could be translated or not. We evaluate pre-translation strategies across 35 languages covering both low and high-resource languages, on various tasks including Question Answering (QA), Natural Language Inference (NLI), Named Entity Recognition (NER), and Abstractive Summarization. Our experiments show the impact of factors as similarity to English, translation quality and the size of pre-trained data, on the model performance with pre-translation. We suggest practical guidelines for choosing optimal strategies in various multilingual settings.
Related papers
- CoCo-CoLa: Evaluating Language Adherence in Multilingual LLMs [1.2057938662974816]
Large Language Models (LLMs) develop cross-lingual abilities despite being trained on limited parallel data.
We introduce CoCo-CoLa, a novel metric to evaluate language adherence in multilingual LLMs.
arXiv Detail & Related papers (2025-02-18T03:03:53Z) - An Initial Investigation of Language Adaptation for TTS Systems under Low-resource Scenarios [76.11409260727459]
This paper explores the language adaptation capability of ZMM-TTS, a recent SSL-based multilingual TTS system.
We demonstrate that the similarity in phonetics between the pre-training and target languages, as well as the language category, affects the target language's adaptation performance.
arXiv Detail & Related papers (2024-06-13T08:16:52Z) - Is Translation All You Need? A Study on Solving Multilingual Tasks with Large Language Models [79.46179534911019]
Large language models (LLMs) have demonstrated multilingual capabilities; yet, they are mostly English-centric due to imbalanced training corpora.
This work extends the evaluation from NLP tasks to real user queries.
For culture-related tasks that need deep language understanding, prompting in the native language tends to be more promising.
arXiv Detail & Related papers (2024-03-15T12:47:39Z) - Few-Shot Cross-Lingual Transfer for Prompting Large Language Models in
Low-Resource Languages [0.0]
"prompting" is where a user provides a description of a task and some completed examples of the task to a PLM as context before prompting the PLM to perform the task on a new example.
We consider three methods: few-shot prompting (prompt), language-adaptive fine-tuning (LAFT), and neural machine translation (translate)
We find that translate and prompt settings are a compute-efficient and cost-effective method of few-shot prompting for the selected low-resource languages.
arXiv Detail & Related papers (2024-03-09T21:36:13Z) - Analyzing and Adapting Large Language Models for Few-Shot Multilingual
NLU: Are We There Yet? [82.02076369811402]
Supervised fine-tuning (SFT), supervised instruction tuning (SIT) and in-context learning (ICL) are three alternative, de facto standard approaches to few-shot learning.
We present an extensive and systematic comparison of the three approaches, testing them on 6 high- and low-resource languages, three different NLU tasks, and a myriad of language and domain setups.
Our observations show that supervised instruction tuning has the best trade-off between performance and resource requirements.
arXiv Detail & Related papers (2024-03-04T10:48:13Z) - Decomposed Prompting: Unveiling Multilingual Linguistic Structure
Knowledge in English-Centric Large Language Models [12.700783525558721]
English-centric Large Language Models (LLMs) like GPT-3 and LLaMA display a remarkable ability to perform multilingual tasks.
This paper introduces the decomposed prompting approach to probe the linguistic structure understanding of these LLMs in sequence labeling tasks.
arXiv Detail & Related papers (2024-02-28T15:15:39Z) - Is Prompt-Based Finetuning Always Better than Vanilla Finetuning?
Insights from Cross-Lingual Language Understanding [0.30586855806896046]
We propose the ProFiT pipeline to investigate the cross-lingual capabilities of Prompt-based Finetuning.
Our results reveal the effectiveness and versatility of prompt-based finetuning in cross-lingual language understanding.
arXiv Detail & Related papers (2023-07-15T20:33:33Z) - BUFFET: Benchmarking Large Language Models for Few-shot Cross-lingual
Transfer [81.5984433881309]
We introduce BUFFET, which unifies 15 diverse tasks across 54 languages in a sequence-to-sequence format.
BUFFET is designed to establish a rigorous and equitable evaluation framework for few-shot cross-lingual transfer.
Our findings reveal significant room for improvement in few-shot in-context cross-lingual transfer.
arXiv Detail & Related papers (2023-05-24T08:06:33Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
Cross-lingual transfer of language models trained on high-resource languages like English has been widely studied for many NLP tasks.
We introduce XSGD for cross-lingual alignment pretraining, a parallel and large-scale multilingual conversation dataset.
To facilitate aligned cross-lingual representations, we develop an efficient prompt-tuning-based method for learning alignment prompts.
arXiv Detail & Related papers (2023-04-03T18:46:01Z) - Towards Best Practices for Training Multilingual Dense Retrieval Models [54.91016739123398]
We focus on the task of monolingual retrieval in a variety of typologically diverse languages using one such design.
Our study is organized as a "best practices" guide for training multilingual dense retrieval models.
arXiv Detail & Related papers (2022-04-05T17:12:53Z) - Zero-Shot Cross-Lingual Transfer with Meta Learning [45.29398184889296]
We consider the setting of training models on multiple languages at the same time, when little or no data is available for languages other than English.
We show that this challenging setup can be approached using meta-learning.
We experiment using standard supervised, zero-shot cross-lingual, as well as few-shot cross-lingual settings for different natural language understanding tasks.
arXiv Detail & Related papers (2020-03-05T16:07:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.