Generalised Hydrodynamics description of the Page curve-like dynamics of
a freely expanding fermionic gas
- URL: http://arxiv.org/abs/2402.18422v2
- Date: Thu, 29 Feb 2024 09:28:48 GMT
- Title: Generalised Hydrodynamics description of the Page curve-like dynamics of
a freely expanding fermionic gas
- Authors: Madhumita Saha, Manas Kulkarni and Abhishek Dhar
- Abstract summary: We study the evolution of entanglement entropy during evaporation of a black hole.
We find that the growth of entanglement is linear and universal, i.e. independent of the details of the defect.
Our study shows the power of the semiclassical approach and could be relevant for discussions on the resolution of the black hole information paradox.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider an analytically tractable model that exhibits the main features
of the Page curve characterizing the evolution of entanglement entropy during
evaporation of a black hole. Our model is a gas of non-interacting fermions on
a lattice that is released from a box into the vacuum. More precisely, our
Hamiltonian is a tight-binding model with a defect at the junction between the
filled box and the vacuum. In addition to the entanglement entropy we consider
several other observables, such as the spatial density profile and current, and
show that the semiclassical approach of generalized hydrodynamics provides a
remarkably accurate description of the quantum dynamics including that of the
entanglement entropy at all times. Our hydrodynamic results agree closely with
those obtained via exact microscopic numerics. We find that the growth of
entanglement is linear and universal, i.e, independent of the details of the
defect. The decay shows $1/t$ scaling for conformal defect while for
non-conformal defects, it is slower. Our study shows the power of the
semiclassical approach and could be relevant for discussions on the resolution
of the black hole information paradox.
Related papers
- Interacting Dirac fields in an expanding universe: dynamical condensates and particle production [41.94295877935867]
This work focuses on a self-interacting field theory of Dirac fermions in an expanding Friedmann-Robertson-Walker universe.
We study how the non-trivialative condensates arise and, more importantly, how their real-time evolution has an impact on particle production.
arXiv Detail & Related papers (2024-08-12T14:21:25Z) - Entanglement R\'enyi Entropies from Ballistic Fluctuation Theory: the
free fermionic case [0.0]
We investigate entanglement entropy using its connection with the large-deviation theory for thermodynamic and hydrodynamic fluctuations.
We show that both the equilibrium behavior and the dynamics of R'enyi entanglement entropies can be fully derived from the Ballistic Fluctuation Theory.
arXiv Detail & Related papers (2023-01-05T23:09:48Z) - Universal features of entanglement entropy in the honeycomb Hubbard
model [44.99833362998488]
This paper introduces a new method to compute the R'enyi entanglement entropy in auxiliary-field quantum Monte Carlo simulations.
We demonstrate the efficiency of this method by extracting, for the first time, universal subleading logarithmic terms in a two dimensional model of interacting fermions.
arXiv Detail & Related papers (2022-11-08T15:52:16Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Quantum critical behavior of entanglement in lattice bosons with
cavity-mediated long-range interactions [0.0]
We analyze the ground-state entanglement entropy of the extended Bose-Hubbard model with infinite-range interactions.
This model describes the low-energy dynamics of ultracold bosons tightly bound to an optical lattice and dispersively coupled to a cavity mode.
arXiv Detail & Related papers (2022-04-16T04:10:57Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Quantum Generalized Hydrodynamics of the Tonks-Girardeau gas: density
fluctuations and entanglement entropy [0.0]
We derive exact results for the density fluctuations and entanglement entropy of a one-dimensional trapped Bose gas in the Tonks-Girardeau (TG) or hard-core limit.
The free nature of the TG gas allows for more accurate results on the numerical side, where a higher number of particles as compared to the interacting case can be simulated.
arXiv Detail & Related papers (2021-07-12T18:00:09Z) - Particle mixing and the emergence of classicality: A
spontaneous-collapse-model view [0.0]
We show that spontaneous collapse can induce the decay dynamics in both quantum state and master equations.
We show that the decay property of a flavor-oscillating system is intimately connected to the time (a)symmetry of the noise field underlying the collapse mechanism.
arXiv Detail & Related papers (2020-08-25T16:07:59Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - The nonlinear semiclassical dynamics of the unbalanced, open Dicke model [0.0]
The Dicke model exhibits a quantum phase transition to a state in which the atoms collectively emit light into the cavity mode, known as superradiance.
We study this system in the semiclassical (mean field) limit, neglecting the role of quantum fluctuations.
We find that a flip of the collective spin can result in the sudden emergence of chaotic dynamics.
arXiv Detail & Related papers (2020-04-09T11:13:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.