論文の概要: Defect Detection in Tire X-Ray Images: Conventional Methods Meet Deep
Structures
- arxiv url: http://arxiv.org/abs/2402.18527v1
- Date: Wed, 28 Feb 2024 18:07:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-29 14:07:40.599317
- Title: Defect Detection in Tire X-Ray Images: Conventional Methods Meet Deep
Structures
- Title(参考訳): タイヤx線画像における欠陥検出:従来の深部構造法
- Authors: Andrei Cozma, Landon Harris, Hairong Qi, Ping Ji, Wenpeng Guo, Song
Yuan
- Abstract要約: 本研究は,欠陥検出システムの性能向上のための特徴工学の重要性を強調した。
実験により, タイヤ欠陥検出の精度と信頼性を, 微調整および機械学習モデルと組み合わせることで, タイヤ欠陥検出の精度と信頼性を著しく向上できることを示した。
- 参考スコア(独自算出の注目度): 4.111152565355453
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a robust approach for automated defect detection in
tire X-ray images by harnessing traditional feature extraction methods such as
Local Binary Pattern (LBP) and Gray Level Co-Occurrence Matrix (GLCM) features,
as well as Fourier and Wavelet-based features, complemented by advanced machine
learning techniques. Recognizing the challenges inherent in the complex
patterns and textures of tire X-ray images, the study emphasizes the
significance of feature engineering to enhance the performance of defect
detection systems. By meticulously integrating combinations of these features
with a Random Forest (RF) classifier and comparing them against advanced models
like YOLOv8, the research not only benchmarks the performance of traditional
features in defect detection but also explores the synergy between classical
and modern approaches. The experimental results demonstrate that these
traditional features, when fine-tuned and combined with machine learning
models, can significantly improve the accuracy and reliability of tire defect
detection, aiming to set a new standard in automated quality assurance in tire
manufacturing.
- Abstract(参考訳): 本稿では,局所二分パターン (lbp) やグレーレベル共起行列 (glcm) などの従来の特徴抽出手法や,フーリエおよびウェーブレットに基づく特徴を機械学習の高度な手法で補完することにより,タイヤx線画像の自動欠陥検出のためのロバストな手法を提案する。
タイヤx線画像の複雑なパターンとテクスチャに内在する課題を認識し,欠陥検出システムの性能向上における特徴工学の重要性を強調した。
これらの特徴とランダムフォレスト(RF)分類器を巧みに統合し、YOLOv8のような先進モデルと比較することにより、この研究は欠陥検出における従来の特徴のパフォーマンスをベンチマークするだけでなく、古典的アプローチと近代的アプローチの相乗効果も探求している。
実験結果から,これらの従来の特徴と機械学習モデルを組み合わせることで,タイヤ欠陥検出の精度と信頼性が向上し,タイヤ製造における品質自動保証の新たな標準が確立されることが示唆された。
関連論文リスト
- Effort: Efficient Orthogonal Modeling for Generalizable AI-Generated Image Detection [66.16595174895802]
既存のAI生成画像(AIGI)検出手法は、しばしば限定的な一般化性能に悩まされる。
本稿では、AIGI検出において、これまで見過ごされてきた重要な非対称性現象を同定する。
論文 参考訳(メタデータ) (2024-11-23T19:10:32Z) - OCR is All you need: Importing Multi-Modality into Image-based Defect Detection System [7.1083241462091165]
我々は,光学的文字認識(OCR)を基本とする外部モダリティ誘導データマイニングフレームワークを導入し,画像から統計的特徴を抽出する。
提案手法の重要な側面は、単一のモーダル認識モデルを用いて抽出された外部モーダル特徴のアライメントであり、畳み込みニューラルネットワークによって符号化された画像特徴である。
本手法は欠陥検出モデルのリコール率を大幅に向上させ,挑戦シナリオにおいても高い堅牢性を維持する。
論文 参考訳(メタデータ) (2024-03-18T07:41:39Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
我々は、先行のない異常発生パラダイムを導入し、GRADと呼ばれる革新的な教師なし異常検出フレームワークを開発した。
PatchDiffは、様々な種類の異常パターンを効果的に公開する。
MVTec ADとMVTec LOCOデータセットの両方の実験も、前述の観測をサポートする。
論文 参考訳(メタデータ) (2023-12-26T07:08:06Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - Neuro-symbolic model for cantilever beams damage detection [0.0]
本稿では,新しい認知アーキテクチャに基づくカンチレバービームの損傷検出のためのニューロシンボリックモデルを提案する。
ハイブリッド識別モデルはLogic Convolutional Neural Regressorという名称で導入されている。
論文 参考訳(メタデータ) (2023-05-04T13:12:39Z) - Reference-Based Autoencoder for Surface Defect Detection [7.163582730053925]
種々のテクスチャ欠陥を正確に検査するために, RB-AE (unsupervised reference-based autoencoder) を提案する。
モデルが画素レベルの識別能力を得ることができるように、人工欠陥と新たな画素レベルの識別損失関数をトレーニングに活用する。
論文 参考訳(メタデータ) (2022-11-18T07:13:55Z) - Deep Autoencoders for Anomaly Detection in Textured Images using CW-SSIM [5.042611743157464]
複素ウェーブレット構造類似度(CW-SSIM)に基づく損失関数の適用により,この種の画像に対して優れた検出性能が得られることを示す。
既知の異常検出ベンチマーク実験により,この損失関数で訓練した単純なモデルにより,最先端の手法に匹敵する,あるいは優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2022-08-30T08:01:25Z) - A Feature Memory Rearrangement Network for Visual Inspection of Textured
Surface Defects Toward Edge Intelligent Manufacturing [4.33060257697635]
本稿では,様々なテクスチャ欠陥を同時に検出するための,教師なし機能メモリ再構成ネットワーク(FMR-Net)を提案する。
人工的な人工的な欠陥を用いて、モデルが異常を認識できるようにし、従来の知恵は欠陥のないサンプルにのみ依存する。
FMR-Netは最先端の検査精度を示し、エッジコンピューティング対応のスマート産業で大きな可能性を秘めている。
論文 参考訳(メタデータ) (2022-06-22T04:05:13Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
SWADと呼ばれる新しい選択および重み付けに基づく異常検出フレームワークを提案する。
ベンチマークと実世界のデータセットによる実験は、SWADの有効性と優位性を示している。
論文 参考訳(メタデータ) (2021-03-08T10:56:38Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。