論文の概要: OCR is All you need: Importing Multi-Modality into Image-based Defect Detection System
- arxiv url: http://arxiv.org/abs/2403.11536v1
- Date: Mon, 18 Mar 2024 07:41:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 16:16:57.317370
- Title: OCR is All you need: Importing Multi-Modality into Image-based Defect Detection System
- Title(参考訳): 画像ベース欠陥検出システムにマルチモードをインポートするOCR
- Authors: Chih-Chung Hsu, Chia-Ming Lee, Chun-Hung Sun, Kuang-Ming Wu,
- Abstract要約: 我々は,光学的文字認識(OCR)を基本とする外部モダリティ誘導データマイニングフレームワークを導入し,画像から統計的特徴を抽出する。
提案手法の重要な側面は、単一のモーダル認識モデルを用いて抽出された外部モーダル特徴のアライメントであり、畳み込みニューラルネットワークによって符号化された画像特徴である。
本手法は欠陥検出モデルのリコール率を大幅に向上させ,挑戦シナリオにおいても高い堅牢性を維持する。
- 参考スコア(独自算出の注目度): 7.1083241462091165
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic optical inspection (AOI) plays a pivotal role in the manufacturing process, predominantly leveraging high-resolution imaging instruments for scanning purposes. It detects anomalies by analyzing image textures or patterns, making it an essential tool in industrial manufacturing and quality control. Despite its importance, the deployment of models for AOI often faces challenges. These include limited sample sizes, which hinder effective feature learning, variations among source domains, and sensitivities to changes in lighting and camera positions during imaging. These factors collectively compromise the accuracy of model predictions. Traditional AOI often fails to capitalize on the rich mechanism-parameter information from machines or inside images, including statistical parameters, which typically benefit AOI classification. To address this, we introduce an external modality-guided data mining framework, primarily rooted in optical character recognition (OCR), to extract statistical features from images as a second modality to enhance performance, termed OANet (Ocr-Aoi-Net). A key aspect of our approach is the alignment of external modality features, extracted using a single modality-aware model, with image features encoded by a convolutional neural network. This synergy enables a more refined fusion of semantic representations from different modalities. We further introduce feature refinement and a gating function in our OANet to optimize the combination of these features, enhancing inference and decision-making capabilities. Experimental outcomes show that our methodology considerably boosts the recall rate of the defect detection model and maintains high robustness even in challenging scenarios.
- Abstract(参考訳): 自動光学検査(AOI)は製造工程において重要な役割を担い、主に走査目的に高解像度撮像装置を活用する。
画像テクスチャやパターンを分析して異常を検知し、工業的製造や品質管理に欠かせないツールとなる。
その重要性にもかかわらず、AOIのためのモデルのデプロイは、しばしば課題に直面します。
これには、効果的な特徴学習を妨げる限られたサンプルサイズ、ソースドメイン間の差異、画像中の照明やカメラの位置の変化に対する感度などが含まれる。
これらの要因は、モデル予測の精度を総括的に損なう。
従来のAOIは、多くの場合、AOI分類の恩恵を受ける統計パラメータを含む、機械または内部画像からの豊富なメカニズムパラメータ情報を活用することに失敗する。
そこで本研究では,OANet(Ocr-Aoi-Net)と呼ばれる,光学的文字認識(OCR)を基本とした外部モダリティ誘導データマイニングフレームワークを導入する。
提案手法の重要な側面は、単一のモーダル認識モデルを用いて抽出された外部モーダル特徴のアライメントであり、畳み込みニューラルネットワークによって符号化された画像特徴である。
このシナジーは、異なるモダリティからより洗練された意味表現の融合を可能にする。
さらに、OANetに機能改善とゲーティング機能を導入し、これらの機能の組み合わせを最適化し、推論と意思決定機能を強化します。
実験結果から,本手法は欠陥検出モデルのリコール率を大幅に向上させ,挑戦シナリオにおいても高い堅牢性を維持することを示す。
関連論文リスト
- Enhancing Diffusion Models for High-Quality Image Generation [0.0]
本稿では,拡散確率モデル(DDPM)と拡散確率モデル(DDIM)の総合的な実装,評価,最適化について述べる。
推論中、これらのモデルはランダムノイズを入力とし、高画質な画像を出力として繰り返し生成する。
この研究の背景にあるのは、さまざまなデータセットをまたいだリアルなイメージを生成可能な、効率的でスケーラブルな生成AIモデルの需要が高まっていることだ。
論文 参考訳(メタデータ) (2024-12-19T00:23:15Z) - A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
本稿では,統計的特徴選択と分類技術を統合し,欠陥検出精度を向上させるハイブリッドフレームワークを提案する。
工業画像から抽出した55個の特徴を統計的手法を用いて解析した。
これらの手法をフレキシブルな機械学習アプリケーションに統合することにより、検出精度を改善し、偽陽性や誤分類を減らす。
論文 参考訳(メタデータ) (2024-12-11T22:12:21Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - AssemAI: Interpretable Image-Based Anomaly Detection for Manufacturing Pipelines [0.0]
製造パイプラインにおける異常検出は、産業環境の複雑さと変動性によって強化され、依然として重要な課題である。
本稿では,スマート製造パイプラインに適した解釈可能な画像ベース異常検出システムAssemAIを紹介する。
論文 参考訳(メタデータ) (2024-08-05T01:50:09Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
マルチモーダルな操作検出とグラウンド処理のためのトランスフォーマーベースのフレームワークを構築する。
本フレームワークは,マルチモーダルアライメントの能力を維持しながら,モダリティ特有の特徴を同時に探求する。
本稿では,グローバルな文脈的キューを各モーダル内に適応的に集約する暗黙的操作クエリ(IMQ)を提案する。
論文 参考訳(メタデータ) (2023-09-22T06:55:41Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Patch Similarity Aware Data-Free Quantization for Vision Transformers [2.954890575035673]
Patch similarity Aware data-free Quantization framework for Vision Transformersを提案する。
本研究では,ガウス雑音と実画像の処理において,自己アテンションモジュールの特性を解析し,一般的な相違点(パッチ類似点)を明らかにする。
PSAQ-ViTの有効性を検証するため,様々なベンチマークで実験およびアブレーション実験を行った。
論文 参考訳(メタデータ) (2022-03-04T11:47:20Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
既存の顔画像超解像法(SR)は、主に人工的にダウンサンプリングされた低解像度(LR)画像の改善に焦点を当てている。
従来の非教師なしドメイン適応(UDA)手法は、未ペアの真のLRとHRデータを用いてモデルをトレーニングすることでこの問題に対処する。
これにより、視覚的特徴を構成することと、画像の解像度を高めることの2つのタスクで、モデルをオーバーストレッチする。
従来のSRモデルとUDAモデルの利点を結合する手法を定式化する。
論文 参考訳(メタデータ) (2019-12-30T16:27:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。