論文の概要: Streamlining the Selection Phase of Systematic Literature Reviews (SLRs) Using AI-Enabled GPT-4 Assistant API
- arxiv url: http://arxiv.org/abs/2402.18582v1
- Date: Sun, 14 Jan 2024 11:16:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 08:36:53.291970
- Title: Streamlining the Selection Phase of Systematic Literature Reviews (SLRs) Using AI-Enabled GPT-4 Assistant API
- Title(参考訳): AI-Enabled GPT-4 Assistant APIを用いた体系的文献レビュー(SLR)の選択フェーズの合理化
- Authors: Seyed Mohammad Ali Jafari,
- Abstract要約: 本研究は,システム文献レビューにおいて,記事選択フェーズの効率を合理化するための,先駆的なAIベースのツールを紹介する。
このツールは、幅広い学術分野にわたる記事選択プロセスの均質化に成功している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The escalating volume of academic literature presents a formidable challenge in staying updated with the newest research developments. Addressing this, this study introduces a pioneering AI-based tool, configured specifically to streamline the efficiency of the article selection phase in Systematic Literature Reviews (SLRs). Utilizing the robust capabilities of OpenAI's GPT-4 Assistant API, the tool successfully homogenizes the article selection process across a broad array of academic disciplines. Implemented through a tripartite approach consisting of data preparation, AI-mediated article assessment, and structured result presentation, this tool significantly accelerates the time-consuming task of literature reviews. Importantly, this tool could be highly beneficial in fields such as management and economics, where the SLR process involves substantial human judgment. The adoption of a standard GPT model can substantially reduce potential biases and enhance the speed and precision of the SLR selection phase. This not only amplifies researcher productivity and accuracy but also denotes a considerable stride forward in the way academic research is conducted amidst the surging body of scholarly publications.
- Abstract(参考訳): 学術文献の増大は、最新の研究動向に追随する上で、重大な課題となっている。
そこで本研究では,SLR(Systematic Literature Reviews)における記事選択フェーズの効率を効率化するための,先駆的なAIベースのツールを提案する。
OpenAIのGPT-4アシスタントAPIの堅牢な機能を利用することで、このツールは幅広い学術分野にわたる記事選択プロセスを均質化することに成功した。
データ準備、AIによる記事評価、構造化された結果提示からなる三部作のアプローチにより、このツールは文学レビューの時間的消費タスクを著しく加速する。
重要なことに、このツールは、SLRプロセスが実質的な人間の判断を伴う管理や経済学などの分野において、非常に有益である可能性がある。
標準GPTモデルを採用することで、潜在的なバイアスを大幅に低減し、SLR選択フェーズの速度と精度を高めることができる。
これは研究者の生産性と正確さを増幅するだけでなく、学術出版の活発化の中で学術研究が行なわれる過程において、かなりの進歩を示している。
関連論文リスト
- PROMPTHEUS: A Human-Centered Pipeline to Streamline SLRs with LLMs [0.0]
PROMPTHEUSは、システム文学レビューのためのAI駆動パイプラインソリューションである。
システム検索、データ抽出、トピックモデリング、要約など、SLRプロセスの重要な段階を自動化する。
高い精度を実現し、一貫性のあるトピック組織を提供し、レビュー時間を短縮します。
論文 参考訳(メタデータ) (2024-10-21T13:05:33Z) - From Exploration to Mastery: Enabling LLMs to Master Tools via Self-Driven Interactions [60.733557487886635]
本稿では,大規模言語モデルと外部ツールとの包括的ギャップを埋めることに焦点を当てる。
ツール文書の動的精錬を目的とした新しいフレームワーク DRAFT を提案する。
複数のデータセットに対する大規模な実験は、DRAFTの反復的なフィードバックベースの改善がドキュメントの品質を大幅に改善することを示している。
論文 参考訳(メタデータ) (2024-10-10T17:58:44Z) - Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions [62.12545440385489]
大規模言語モデル(LLM)は、テキスト生成の大幅な進歩をもたらしたが、分類タスクの強化の可能性はまだ未検討である。
生成と符号化の両方のアプローチを含む分類のための微調整LDMを徹底的に研究するためのフレームワークを提案する。
我々はこのフレームワークを編集意図分類(EIC)においてインスタンス化する。
論文 参考訳(メタデータ) (2024-10-02T20:48:28Z) - LLAssist: Simple Tools for Automating Literature Review Using Large Language Models [0.0]
LLAssistは学術研究における文献レビューの合理化を目的としたオープンソースツールである。
レビュープロセスの重要な側面を自動化するために、Large Language Models(LLM)とNatural Language Processing(NLP)技術を使用する。
論文 参考訳(メタデータ) (2024-07-19T02:48:54Z) - Artificial Intuition: Efficient Classification of Scientific Abstracts [42.299140272218274]
短い科学的テキストは、解釈を助けるための豊富な知識を持つ専門家に、密集した情報を効率的に伝達する。
このギャップに対処するために、我々は、粗いドメイン固有のラベルを生成し、適切に割り当てる新しいアプローチを開発した。
本稿では,大規模言語モデル(LLM)が,補足的知識の強化に類似したプロセスにおいて,タスクに不可欠なメタデータを提供することを示す。
論文 参考訳(メタデータ) (2024-07-08T16:34:47Z) - Automating Research Synthesis with Domain-Specific Large Language Model Fine-Tuning [0.9110413356918055]
本研究は,SLR(Systematic Literature Reviews)の自動化にLLM(Funture-Tuned Large Language Models)を用いた先駆的研究である。
本研究は,オープンソースLLMとともに最新の微調整手法を採用し,SLRプロセスの最終実行段階を自動化するための実用的で効率的な手法を実証した。
その結果, LLM応答の精度は高く, 既存のPRISMAコンフォーミングSLRの複製により検証された。
論文 参考訳(メタデータ) (2024-04-08T00:08:29Z) - System for systematic literature review using multiple AI agents:
Concept and an empirical evaluation [5.194208843843004]
本稿では,システム文献レビューの実施プロセスの完全自動化を目的とした,新しいマルチAIエージェントモデルを提案する。
このモデルは、研究者がトピックを入力するユーザフレンドリーなインターフェースを介して動作する。
関連する学術論文を検索するために使用される検索文字列を生成する。
モデルはこれらの論文の要約を自律的に要約する。
論文 参考訳(メタデータ) (2024-03-13T10:27:52Z) - Artificial Intelligence for Literature Reviews: Opportunities and Challenges [0.0]
この写本は、システム文献レビューにおける人工知能の使用に関する包括的なレビューを提示する。
SLRは、あるトピックに関する以前の研究を評価し、統合する厳格で組織化された方法論である。
従来の23の機能と11のAI機能を組み合わせたフレームワークを用いて、主要なSLRツール21について検討する。
論文 参考訳(メタデータ) (2024-02-13T16:05:51Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
筆者らは,報酬の計算と環境のリセットを行う手法とともに,効率的なオフ・ポリティクス・ディープ・RL法を含むライブラリを開発した。
我々は,PCBボードアセンブリ,ケーブルルーティング,オブジェクトの移動に関するポリシを,非常に効率的な学習を実現することができることを発見した。
これらの政策は完全な成功率またはほぼ完全な成功率、摂動下でさえ極端な堅牢性を実現し、突発的な堅牢性回復と修正行動を示す。
論文 参考訳(メタデータ) (2024-01-29T10:01:10Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
LLM(Large Language Models)の急速な成長は、様々なドメインを変換する原動力となっている。
本稿では,LLMのエンドツーエンドのアルゴリズム開発に不可欠な多面的効率性について検討する。
論文 参考訳(メタデータ) (2023-12-01T16:00:25Z) - Application of Transformers based methods in Electronic Medical Records:
A Systematic Literature Review [77.34726150561087]
本研究は,異なるNLPタスクにおける電子カルテ(EMR)のトランスフォーマーに基づく手法を用いて,最先端技術に関する体系的な文献レビューを行う。
論文 参考訳(メタデータ) (2023-04-05T22:19:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。