論文の概要: A Priori Uncertainty Quantification of Reacting Turbulence Closure
Models using Bayesian Neural Networks
- arxiv url: http://arxiv.org/abs/2402.18729v1
- Date: Wed, 28 Feb 2024 22:19:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-01 16:41:20.468464
- Title: A Priori Uncertainty Quantification of Reacting Turbulence Closure
Models using Bayesian Neural Networks
- Title(参考訳): ベイズニューラルネットワークを用いた反応乱流閉鎖モデルの事前不確かさ定量化
- Authors: Graham Pash, Malik Hassanaly, Shashank Yellapantula
- Abstract要約: 反応流モデルにおける不確実性を捉えるためにベイズニューラルネットワークを用いる。
我々は、BNNモデルが、データ駆動クロージャモデルの不確実性の構造に関するユニークな洞察を提供することができることを示した。
このモデルの有効性は,様々な火炎条件と燃料からなるデータセットに対する事前評価によって実証される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While many physics-based closure model forms have been posited for the
sub-filter scale (SFS) in large eddy simulation (LES), vast amounts of data
available from direct numerical simulation (DNS) create opportunities to
leverage data-driven modeling techniques. Albeit flexible, data-driven models
still depend on the dataset and the functional form of the model chosen.
Increased adoption of such models requires reliable uncertainty estimates both
in the data-informed and out-of-distribution regimes. In this work, we employ
Bayesian neural networks (BNNs) to capture both epistemic and aleatoric
uncertainties in a reacting flow model. In particular, we model the filtered
progress variable scalar dissipation rate which plays a key role in the
dynamics of turbulent premixed flames. We demonstrate that BNN models can
provide unique insights about the structure of uncertainty of the data-driven
closure models. We also propose a method for the incorporation of
out-of-distribution information in a BNN. The efficacy of the model is
demonstrated by a priori evaluation on a dataset consisting of a variety of
flame conditions and fuels.
- Abstract(参考訳): 大規模渦シミュレーション(LES)におけるサブフィルタスケール(SFS)に物理に基づくクロージャモデル形式が多数提案されているが、直接数値シミュレーション(DNS)から得られる膨大な量のデータが、データ駆動モデリング技術を活用する機会を生み出している。
フレキシブルなデータ駆動モデルは、選択したモデルのデータセットと機能形式に依存しています。
このようなモデルの採用の増加には、データインフォームドとアウト・オブ・ディストリビューションの両方において、確実な不確実性推定が必要である。
本研究ではベイズニューラルネットワーク(BNN)を用いて,反応流モデルにおけるてんかんおよびアレータリックな不確かさを捉える。
特に,乱流予混合火炎の動力学において重要な役割を果たすフィルタ付き進行変数スカラー散逸率をモデル化した。
我々は、BNNモデルが、データ駆動クロージャモデルの不確実性の構造に関するユニークな洞察を提供することを示した。
また,BNNにおけるアウト・オブ・ディストリビューション情報の導入方法を提案する。
このモデルの有効性は,様々な火炎条件と燃料からなるデータセットに対する事前評価によって実証される。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
拡散モデルは、生成的モデリングに大きな進歩をもたらした。
しかし、彼らの普及はデータ属性と解釈可能性に関する課題を引き起こす。
本稿では,テキスト・インフルエンス・ファンクション・フレームワークを開発することにより,このような課題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-10-17T17:59:02Z) - Data-Driven Stochastic Closure Modeling via Conditional Diffusion Model and Neural Operator [0.0]
クロージャモデルは、乱流や地球系のような複雑なマルチスケール力学系をシミュレートするのに広く用いられている。
明確なスケールを持たないシステムでは、一般化決定論的および局所閉包モデルは十分な能力に欠けることが多い。
ニューラル演算子と非局所クロージャモデルを構築するためのデータ駆動モデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-06T05:21:31Z) - Self-Supervision Improves Diffusion Models for Tabular Data Imputation [20.871219616589986]
本稿では,自己教師型計算拡散モデル (SimpDM for brevity) という高度な拡散モデルを提案する。
ノイズに対する感度を緩和するために、モデルを規則化し、一貫した安定な計算予測を保証する自己教師付きアライメント機構を導入する。
我々はまた、SimpDM内で慎重に設計された状態依存データ拡張戦略を導入し、限られたデータを扱う際の拡散モデルの堅牢性を高める。
論文 参考訳(メタデータ) (2024-07-25T13:06:30Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Uncertainty-aware Surrogate Models for Airfoil Flow Simulations with Denoising Diffusion Probabilistic Models [26.178192913986344]
本研究では,拡散確率モデル(DDPM)を用いて乱流シミュレーションのための不確実性を考慮した代理モデルの訓練を行う。
その結果、DDPMは解全体の分布を正確に把握し、その結果、シミュレーションの不確かさを正確に推定できることがわかった。
また,正規拡散モデルと比較して,新たな生成モデルであるフローマッチングの評価を行った。
論文 参考訳(メタデータ) (2023-12-08T19:04:17Z) - Uncertainty quantification and out-of-distribution detection using
surjective normalizing flows [46.51077762143714]
本稿では,深層ニューラルネットワークモデルにおける分布外データセットの探索的正規化フローを用いた簡単なアプローチを提案する。
本手法は, 流通外データと流通内データとを確実に識別できることを示す。
論文 参考訳(メタデータ) (2023-11-01T09:08:35Z) - A Statistical-Modelling Approach to Feedforward Neural Network Model Selection [0.8287206589886881]
フィードフォワードニューラルネットワーク(FNN)は非線形回帰モデルと見なすことができる。
FNNのためのベイズ情報基準(BIC)を用いて,新しいモデル選択法を提案する。
サンプル外性能よりもBICを選択することは、真のモデルを回復する確率を増大させる。
論文 参考訳(メタデータ) (2022-07-09T11:07:04Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。