Dual Operating Modes of In-Context Learning
- URL: http://arxiv.org/abs/2402.18819v2
- Date: Fri, 2 Aug 2024 08:22:57 GMT
- Title: Dual Operating Modes of In-Context Learning
- Authors: Ziqian Lin, Kangwook Lee,
- Abstract summary: In-context learning (ICL) exhibits dual operating modes: task learning, and task retrieval.
Recent theoretical work investigates various mathematical models to analyze ICL.
We introduce a probabilistic model, with which one can explain the dual operating modes of ICL simultaneously.
- Score: 8.664657381613695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In-context learning (ICL) exhibits dual operating modes: task learning, i.e., acquiring a new skill from in-context samples, and task retrieval, i.e., locating and activating a relevant pretrained skill. Recent theoretical work investigates various mathematical models to analyze ICL, but existing models explain only one operating mode at a time. We introduce a probabilistic model, with which one can explain the dual operating modes of ICL simultaneously. Focusing on in-context learning of linear functions, we extend existing models for pretraining data by introducing multiple task groups and task-dependent input distributions. We then analyze the behavior of the optimally pretrained model under the squared loss, i.e., the MMSE estimator of the label given in-context examples. Regarding pretraining task distribution as prior and in-context examples as the observation, we derive the closed-form expression of the task posterior distribution. With the closed-form expression, we obtain a quantitative understanding of the two operating modes of ICL. Furthermore, we shed light on an unexplained phenomenon observed in practice: under certain settings, the ICL risk initially increases and then decreases with more in-context examples. Our model offers a plausible explanation for this "early ascent" phenomenon: a limited number of in-context samples may lead to the retrieval of an incorrect skill, thereby increasing the risk, which will eventually diminish as task learning takes effect with more in-context samples. We also theoretically analyze ICL with biased labels, e.g., zero-shot ICL, where in-context examples are assigned random labels. Lastly, we validate our findings and predictions via experiments involving Transformers and large language models.
Related papers
- Toward Understanding In-context vs. In-weight Learning [50.24035812301655]
We identify simplified distributional properties that give rise to the emergence and disappearance of in-context learning.
We then extend the study to a full large language model, showing how fine-tuning on various collections of natural language prompts can elicit similar in-context and in-weight learning behaviour.
arXiv Detail & Related papers (2024-10-30T14:09:00Z) - Can In-context Learning Really Generalize to Out-of-distribution Tasks? [36.11431280689549]
We investigate the mechanism of in-context learning (ICL) on out-of-distribution (OOD) tasks that were not encountered during training.
We reveal that Transformers may struggle to learn OOD task functions through ICL.
arXiv Detail & Related papers (2024-10-13T02:10:26Z) - Investigating the Pre-Training Dynamics of In-Context Learning: Task Recognition vs. Task Learning [99.05401042153214]
In-context learning (ICL) is potentially attributed to two major abilities: task recognition (TR) and task learning (TL)
We take the first step by examining the pre-training dynamics of the emergence of ICL.
We propose a simple yet effective method to better integrate these two abilities for ICL at inference time.
arXiv Detail & Related papers (2024-06-20T06:37:47Z) - Implicit In-context Learning [37.0562059811099]
In-context Learning (ICL) empowers large language models to adapt to unseen tasks during inference by prefixing a few demonstration examples prior to test queries.
We introduce Implicit In-context Learning (I2CL), an innovative paradigm that addresses the challenges associated with traditional ICL by absorbing demonstration examples within the activation space.
I2CL achieves few-shot performance with zero-shot cost and exhibits robustness against the variation of demonstration examples.
arXiv Detail & Related papers (2024-05-23T14:57:52Z) - The mechanistic basis of data dependence and abrupt learning in an
in-context classification task [0.3626013617212666]
We show that specific distributional properties inherent in language control the trade-off or simultaneous appearance of two forms of learning.
In-context learning is driven by the abrupt emergence of an induction head, which subsequently competes with in-weights learning.
We propose that the sharp transitions in attention-based networks arise due to a specific chain of multi-layer operations necessary to achieve ICL.
arXiv Detail & Related papers (2023-12-03T20:53:41Z) - How Many Pretraining Tasks Are Needed for In-Context Learning of Linear Regression? [92.90857135952231]
Transformers pretrained on diverse tasks exhibit remarkable in-context learning (ICL) capabilities.
We study ICL in one of its simplest setups: pretraining a linearly parameterized single-layer linear attention model for linear regression.
arXiv Detail & Related papers (2023-10-12T15:01:43Z) - RetICL: Sequential Retrieval of In-Context Examples with Reinforcement Learning [53.52699766206808]
We propose Retrieval for In-Context Learning (RetICL), a learnable method for modeling and optimally selecting examples sequentially for in-context learning.
We evaluate RetICL on math word problem solving and scientific question answering tasks and show that it consistently outperforms or matches and learnable baselines.
arXiv Detail & Related papers (2023-05-23T20:15:56Z) - Concept-aware Training Improves In-context Learning Ability of Language
Models [0.0]
Many recent language models (LMs) of Transformers family exhibit so-called in-context learning (ICL) ability.
We propose a method to create LMs able to better utilize the in-context information.
We measure that data sampling of Concept-aware Training consistently improves models' reasoning ability.
arXiv Detail & Related papers (2023-05-23T07:44:52Z) - Explaining Emergent In-Context Learning as Kernel Regression [61.57151500616111]
Large language models (LLMs) have initiated a paradigm shift in transfer learning.
In this paper, we investigate the reason why a transformer-based language model can accomplish in-context learning after pre-training.
We find that during ICL, the attention and hidden features in LLMs match the behaviors of a kernel regression.
arXiv Detail & Related papers (2023-05-22T06:45:02Z) - An Explanation of In-context Learning as Implicit Bayesian Inference [117.19809377740188]
We study the role of the pretraining distribution on the emergence of in-context learning.
We prove that in-context learning occurs implicitly via Bayesian inference of the latent concept.
We empirically find that scaling model size improves in-context accuracy even when the pretraining loss is the same.
arXiv Detail & Related papers (2021-11-03T09:12:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.