論文の概要: Taking Second-life Batteries from Exhausted to Empowered using Experiments, Data Analysis, and Health Estimation
- arxiv url: http://arxiv.org/abs/2402.18859v2
- Date: Sat, 8 Jun 2024 16:46:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 01:03:43.119428
- Title: Taking Second-life Batteries from Exhausted to Empowered using Experiments, Data Analysis, and Health Estimation
- Title(参考訳): 実験・データ分析・健康評価を応用した第2世代電池の排気から有効利用
- Authors: Xiaofan Cui, Muhammad Aadil Khan, Gabriele Pozzato, Surinder Singh, Ratnesh Sharma, Simona Onori,
- Abstract要約: 電力貯蔵における引退した電気自動車電池の再利用は、環境と経済的利益をもたらす。
本研究は、グリッドストレージに配備された電池の健康モニタリングアルゴリズムに焦点をあてる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The reuse of retired electric vehicle batteries in grid energy storage offers environmental and economic benefits. This study concentrates on health monitoring algorithms for retired batteries deployed in grid storage. Over 15 months of testing, we collect, analyze, and publicize a dataset of second-life batteries, implementing a cycling protocol simulating grid energy storage load profiles within a 3-4 V voltage window. Four machine-learning-based health estimation models, relying on online-accessible features and initial capacity, are compared, with the selected model achieving a mean absolute percentage error below 2.3% on test data. Additionally, an adaptive online health estimation algorithm is proposed by integrating a clustering-based method, thus limiting estimation errors during online deployment. These results showcase the feasibility of repurposing retired batteries for second-life applications. Based on obtained data and power demand, these second-life batteries exhibit potential for over a decade of grid energy storage use.
- Abstract(参考訳): 電力貯蔵における引退した電気自動車電池の再利用は、環境と経済的利益をもたらす。
本研究は、グリッドストレージに配備された電池の健康モニタリングアルゴリズムに焦点をあてる。
15ヶ月にわたるテストで、我々は第2世代のバッテリーのデータセットを収集し、分析し、公開し、3-4Vの電圧ウィンドウ内でグリッドエネルギーストレージの負荷プロファイルをシミュレートするサイクリングプロトコルを実装しました。
オンラインアクセス可能な特徴と初期能力に依存した4つの機械学習ベースの健康推定モデルを比較し、選択したモデルがテストデータの平均絶対誤差を2.3%以下とした。
さらに、クラスタリングに基づく手法を統合することで、オンラインデプロイメント中の推定誤差を制限することで、適応的なオンラインヘルス推定アルゴリズムを提案する。
これらの結果から, 二次寿命用電池の再購入の可能性が示された。
得られたデータと電力需要に基づいて、この第2世代電池は10年以上の電力貯蔵の可能性を秘めている。
関連論文リスト
- BatSort: Enhanced Battery Classification with Transfer Learning for Battery Sorting and Recycling [42.453194049264646]
バッテリータイプ分類のための機械学習に基づくアプローチを導入し、アプリケーションにおけるデータ不足の問題に対処する。
本研究では,大規模なデータセットに最適化された既存の知識を活用するために移動学習を適用したBatSortを提案する。
実験の結果,BatSortの精度は平均92.1%,最大96.2%であった。
論文 参考訳(メタデータ) (2024-04-08T18:05:24Z) - Estimation of Remaining Useful Life and SOH of Lithium Ion Batteries
(For EV Vehicles) [0.0]
本稿では,リチウムイオン電池の寿命を推定するための既存手法について概説する。
リチウムイオン電池の寿命を正確に予測するための機械学習技術に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-17T15:35:31Z) - Evaluating feasibility of batteries for second-life applications using
machine learning [0.0]
本稿では,引退した電気自動車電池の迅速な評価を可能にするための機械学習技術の組み合わせについて述べる。
提案アルゴリズムは,利用可能なバッテリ電流と簡易な統計値を用いた電圧測定から特徴量を生成する。
相関分析を用いて特徴を選択し、ランク付けし、バッジによって強化されたガウスプロセス回帰を採用する。
論文 参考訳(メタデータ) (2022-03-08T18:07:33Z) - Battery Cloud with Advanced Algorithms [1.7205106391379026]
バッテリクラウドまたはクラウドバッテリ管理システムは、クラウド計算パワーとデータストレージを活用して、バッテリ安全性、パフォーマンス、経済性を改善する。
この研究は、電気自動車やエネルギー貯蔵システムから計測されたバッテリーデータを収集するバッテリクラウドを提示する。
論文 参考訳(メタデータ) (2022-03-07T21:56:17Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
本稿では,フェデレートラーニングモデルに基づく不安度を測る新しい手法を提案する。
バッテリー消費を推定し、車両ネットワークにエネルギー効率の高いルートプランニングを提供する。
論文 参考訳(メタデータ) (2021-11-13T15:03:44Z) - Data Driven Prediction of Battery Cycle Life Before Capacity Degradation [0.0]
本稿では,Kristen A. Seversonらが実施したデータと手法を用いて,研究チームが使用した方法論を探索する。
基本的な取り組みは、機械学習技術が、バッテリー容量を正確に予測するために、早期ライフサイクルデータを使用するように訓練されているかどうかを確認することである。
論文 参考訳(メタデータ) (2021-10-19T01:35:12Z) - Overcoming limited battery data challenges: A coupled neural network
approach [0.0]
深層ニューラルネットワークを用いた時系列バッテリデータ拡張手法を提案する。
あるモデルはバッテリ充電プロファイルを生成し、別のモデルはバッテリ放電プロファイルを生成する。
その結果,バッテリーデータに制限がある場合の問題点を解消するために,本手法の有効性が示された。
論文 参考訳(メタデータ) (2021-10-05T16:17:19Z) - Optimizing a domestic battery and solar photovoltaic system with deep
reinforcement learning [69.68068088508505]
バッテリーと太陽光発電システムのコストの低下は、ソーラーバッテリーの家庭用システムの増加に繋がった。
本研究では,システム内の電池の充電および放電挙動を最適化するために,深い決定論的ポリシーアルゴリズムを用いる。
論文 参考訳(メタデータ) (2021-09-10T10:59:14Z) - State-of-Charge Estimation of a Li-Ion Battery using Deep Forward Neural
Networks [68.8204255655161]
リチウムイオン電池のためのDeep Forward Networkを構築し,その性能評価を行った。
本研究の貢献はリチウムイオン電池用ディープフォワードネットワークの構築手法とその性能評価である。
論文 参考訳(メタデータ) (2020-09-20T23:47:11Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
電動垂直離着陸機(eVTOL)の設計、解析、運用には、Liイオン電池の性能の迅速かつ正確な予測が必要である。
我々は,eVTOLのデューティサイクルに特有の電池性能と熱的挙動のデータセットを生成する。
このデータセットを用いて,物理インフォームド機械学習を用いた電池性能・劣化モデル(Cellfit)を開発した。
論文 参考訳(メタデータ) (2020-07-06T16:10:54Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。