論文の概要: PulseBat: A field-accessible dataset for second-life battery diagnostics from realistic histories using multidimensional rapid pulse test
- arxiv url: http://arxiv.org/abs/2502.16848v1
- Date: Mon, 24 Feb 2025 05:10:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:52:50.437394
- Title: PulseBat: A field-accessible dataset for second-life battery diagnostics from realistic histories using multidimensional rapid pulse test
- Title(参考訳): PulseBat: 多次元高速パルス試験による実地史からの二次電池診断のためのフィールドアクセス可能なデータセット
- Authors: Shengyu Tao, Guangyuan Ma, Huixiong Yang, Minyan Lu, Guodan Wei, Guangmin Zhou, Xuan Zhang,
- Abstract要約: 著者らは464個のリチウムイオン電池をテストし、3種類の陰極材料、6つの歴史的使用法、3つの物理的フォーマット、6つの容量設計をカバーした。
パルス実験は, パルス幅10回, パルス径10回, 充電状態複数回, 健康状態2回毎に繰り返し行った。
- 参考スコア(独自算出の注目度): 3.2964352866691677
- License:
- Abstract: As electric vehicles (EVs) approach the end of their operational life, their batteries retain significant economic value and present promising opportunities for second-life use and material recycling. This is particularly compelling for Global South and other underdeveloped regions, where reliable energy storage is vital to addressing critical challenges posed by weak and even nonexistent power grid and energy infrastructures. However, despite this potential, widespread adoption has been hindered by critical uncertainties surrounding the technical performance, safety, and recertification of second-life batteries. In cases where they have been redeployed, mismatches between estimated and actual performance often render batteries technically unsuitable or hazardous, turning them into liabilities for communities they were intended to benefit. This considerable misalignment exacerbates energy access disparities and undermines the broader vision of energy justice, highlighting an urgent need for robust and scalable solutions to unlock the potential. In the PulseBat Dataset, the authors tested 464 retired lithium-ion batteries, covering 3 cathode material types, 6 historical usages, 3 physical formats, and 6 capacity designs. The pulse test experiments were performed repeatedly for each second-life battery with 10 pulse width, 10 pulse magnitude, multiple state-of-charge, and state-of-health conditions, e.g., from 0.37 to 1.03. The PulseBat Dataset recorded these test conditions and the voltage response as well as the temperature signals that were subject to the injected pulse current, which could be used as a valuable data resource for critical diagnostics tasks such as state-of-charge estimation, state-of-health estimation, cathode material type identification, open-circuit voltage reconstruction, thermal management, and beyond.
- Abstract(参考訳): 電気自動車(EV)が運用寿命の終わりに近づくにつれ、その電池は経済的価値を著しく保ち、二次的な使用や材料のリサイクルに有望な機会を提供する。
これはグローバル・サウスや他の未開発地域にとって特に魅力的であり、信頼性の高いエネルギー貯蔵は弱い電力網やエネルギーインフラによってもたらされる致命的な課題に対処するために不可欠である。
しかし、この可能性にもかかわらず、二次電池の技術的性能、安全性、再認証に関する重大な不確実性により、広く採用が妨げられている。
再配備された場合、推定された性能と実際の性能のミスマッチが、技術的に不適当または有害なバッテリーをしばしば引き起こし、彼らが利益を期待するコミュニティに責任を負わせる。
このかなりのミスアライメントは、エネルギーアクセスの格差を悪化させ、エネルギーの正義というより広いビジョンを損なう。
著者らはPulseBat Datasetで464個のリチウムイオン電池をテストし、3種類の陰極材料、6つの歴史的使用法、3つの物理フォーマット、6つの容量設計をカバーした。
パルス実験は, パルス幅10回, パルス径10回, 充電状態複数回, 健康状態0。
PulseBat Datasetは、これらの試験条件と電圧応答、および注入パルス電流を受ける温度信号を記録しており、これは、状態電荷推定、状態電荷推定、陰極材料タイプ同定、開回路電圧再構成、熱管理などの重要な診断タスクのための貴重なデータリソースとして使用できる。
関連論文リスト
- Predicting ionic conductivity in solids from the machine-learned potential energy landscape [68.25662704255433]
超イオン材料は、エネルギー密度と安全性を向上させる固体電池の推進に不可欠である。
このような物質を同定するための従来の計算手法は資源集約的であり、容易ではない。
普遍的原子間ポテンシャル解析によるイオン伝導率の迅速かつ確実な評価手法を提案する。
論文 参考訳(メタデータ) (2024-11-11T09:01:36Z) - Taking Second-life Batteries from Exhausted to Empowered using Experiments, Data Analysis, and Health Estimation [0.0]
電力貯蔵における引退した電気自動車電池の再利用は、環境と経済的利益をもたらす。
本研究は、グリッドストレージに配備された電池の健康モニタリングアルゴリズムに焦点をあてる。
論文 参考訳(メタデータ) (2024-02-29T05:17:36Z) - Remaining useful life prediction of Lithium-ion batteries using spatio-temporal multimodal attention networks [4.249657064343807]
リチウムイオン電池は、電気自動車や再生可能エネルギー貯蔵など様々な用途で広く使われている。
電池の残存寿命(RUL)の予測は信頼性と効率の確保に不可欠である。
本稿では, 時空間アテンションネットワーク(ST-MAN)を用いたリチウムイオン電池の2段階RUL予測手法を提案する。
論文 参考訳(メタデータ) (2023-10-29T07:32:32Z) - Prognosis of Multivariate Battery State of Performance and Health via
Transformers [0.0]
バッテリー性能と「使い勝手」を設計・使用の機能として理解することが最重要事項である。
健康記述子の28個のバッテリ状態を予測するために, ディープ・トランスフォーマー・ネットワーク経由で, その方向への第一歩を提示する。
論文 参考訳(メタデータ) (2023-09-18T15:04:40Z) - A Mapping Study of Machine Learning Methods for Remaining Useful Life
Estimation of Lead-Acid Batteries [0.0]
State of Health (SoH) と Remaining Useful Life (RUL) は、バッテリーシステムの予測保守、信頼性、寿命の向上に貢献している。
本稿では,鉛蓄電池のSoHとRULを推定するための機械学習手法における最先端のマッピング研究について述べる。
論文 参考訳(メタデータ) (2023-07-11T10:41:41Z) - PulseImpute: A Novel Benchmark Task for Pulsative Physiological Signal
Imputation [54.839600943189915]
モバイルヘルス(英語: Mobile Health、mHealth)は、ウェアラブルセンサーを使用して、日常生活中の参加者の生理状態を高頻度で監視し、時間的に精度の高い健康介入を可能にする能力である。
豊富な計算文学にもかかわらず、既存の技術は多くのmHealthアプリケーションを構成する脈動信号には効果がない。
このギャップに対処するPulseImputeは、現実的なmHealth欠損モデル、幅広いベースラインセット、臨床関連下流タスクを含む、最初の大規模パルス信号計算チャレンジである。
論文 参考訳(メタデータ) (2022-12-14T21:39:15Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - Validation Methods for Energy Time Series Scenarios from Deep Generative
Models [55.41644538483948]
一般的なシナリオ生成アプローチでは、データ分散に関する前提なしにシナリオを生成するディープ生成モデル(DGM)を使用する。
エネルギーシナリオ生成文献における現在使われている検証手法の批判的評価を行う。
過去のデータと生成されたデータの両方に4つの検証手法を適用し、検証結果の解釈と、一般的な誤り、落とし穴、検証方法の限界について議論する。
論文 参考訳(メタデータ) (2021-10-27T14:14:25Z) - Overcoming limited battery data challenges: A coupled neural network
approach [0.0]
深層ニューラルネットワークを用いた時系列バッテリデータ拡張手法を提案する。
あるモデルはバッテリ充電プロファイルを生成し、別のモデルはバッテリ放電プロファイルを生成する。
その結果,バッテリーデータに制限がある場合の問題点を解消するために,本手法の有効性が示された。
論文 参考訳(メタデータ) (2021-10-05T16:17:19Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
電動垂直離着陸機(eVTOL)の設計、解析、運用には、Liイオン電池の性能の迅速かつ正確な予測が必要である。
我々は,eVTOLのデューティサイクルに特有の電池性能と熱的挙動のデータセットを生成する。
このデータセットを用いて,物理インフォームド機械学習を用いた電池性能・劣化モデル(Cellfit)を開発した。
論文 参考訳(メタデータ) (2020-07-06T16:10:54Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。