論文の概要: Improving Group Connectivity for Generalization of Federated Deep
Learning
- arxiv url: http://arxiv.org/abs/2402.18949v1
- Date: Thu, 29 Feb 2024 08:27:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-01 15:32:42.209121
- Title: Improving Group Connectivity for Generalization of Federated Deep
Learning
- Title(参考訳): 深層学習の一般化のためのグループ接続性の向上
- Authors: Zexi Li, Jie Lin, Zhiqi Li, Didi Zhu, Chao Wu
- Abstract要約: フェデレートラーニング(FL)では、複数のクライアントが反復的なローカル更新とモデル融合を通じてグローバルモデルを協調的にトレーニングする。
本稿では,基本的な接続性の観点からFLの一般化を研究・改善する。
我々はFedGuCciとFedGuCci+を提案する。
- 参考スコア(独自算出の注目度): 8.594665698279522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) involves multiple heterogeneous clients
collaboratively training a global model via iterative local updates and model
fusion. The generalization of FL's global model has a large gap compared with
centralized training, which is its bottleneck for broader applications. In this
paper, we study and improve FL's generalization through a fundamental
``connectivity'' perspective, which means how the local models are connected in
the parameter region and fused into a generalized global model. The term
``connectivity'' is derived from linear mode connectivity (LMC), studying the
interpolated loss landscape of two different solutions (e.g., modes) of neural
networks. Bridging the gap between LMC and FL, in this paper, we leverage fixed
anchor models to empirically and theoretically study the transitivity property
of connectivity from two models (LMC) to a group of models (model fusion in
FL). Based on the findings, we propose FedGuCci and FedGuCci+, improving group
connectivity for better generalization. It is shown that our methods can boost
the generalization of FL under client heterogeneity across various tasks (4 CV
datasets and 6 NLP datasets), models (both convolutional and
transformer-based), and training paradigms (both from-scratch and
pretrain-finetune).
- Abstract(参考訳): フェデレーション学習(fl)は、反復的なローカル更新とモデル融合を通じてグローバルモデルを協調的にトレーニングする複数の異種クライアントを伴う。
flのグローバルモデルの一般化は、より広範なアプリケーションにおけるボトルネックである集中型トレーニングに比べて大きなギャップがある。
本稿では,局所モデルがパラメータ領域でどのように接続され,一般化された大域モデルに融合されるかという観点から,flの一般化を考察し,改善する。
接続性」という用語は、ニューラルネットワークの2つの異なる解(例えばモード)の補間された損失景観を研究する線形モード接続(LMC)に由来する。
本稿では, LMC と FL のギャップを埋めるため, 固定アンカーモデルを用いて, 2 モデル (LMC) から 1 モデル群 (FL のモデル融合) への接続の遷移特性を実験的に理論的に検討する。
この結果に基づき,FedGuCciとFedGuCci+を提案する。
提案手法は,クライアントの不均一性下でのFLの一般化(4つのCVデータセットと6つのNLPデータセット),モデル(畳み込みとトランスフォーマーベースの両方),トレーニングパラダイム(スクラッチとプレトレインファイントゥンの両方)を拡張可能である。
関連論文リスト
- Multi-level Personalized Federated Learning on Heterogeneous and Long-Tailed Data [10.64629029156029]
マルチレベル・パーソナライズド・フェデレーション・ラーニング(MuPFL)という革新的パーソナライズド・パーソナライズド・ラーニング・フレームワークを導入する。
MuPFLは3つの重要なモジュールを統合している: Biased Activation Value Dropout (BAVD), Adaptive Cluster-based Model Update (ACMU), Prior Knowledge-assisted Fine-tuning (PKCF)。
様々な実世界のデータセットの実験では、MuPFLは極端に非i.d.と長い尾の条件下であっても、最先端のベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2024-05-10T11:52:53Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
フェデレートラーニング(FL)は、複数の参加者が分散データソースを使用して機械学習モデルを協調的にトレーニングすることを可能にする。
FLにおけるモデルプライバシ保護の欠如は無視できない課題となっている。
そこで本研究では,ソフトプロンプトによって参加者間の情報交換を実現する新しいFLトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T11:01:10Z) - FedSoup: Improving Generalization and Personalization in Federated
Learning via Selective Model Interpolation [32.36334319329364]
クロスサイロフェデレーション学習(FL)は、データセンタに分散したデータセット上での機械学習モデルの開発を可能にする。
近年の研究では、現在のFLアルゴリズムは、分布シフトに直面した場合、局所的な性能とグローバルな性能のトレードオフに直面している。
地域とグローバルのパフォーマンスのトレードオフを最適化する新しいフェデレーションモデルスープ手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T00:07:29Z) - FedGH: Heterogeneous Federated Learning with Generalized Global Header [16.26231633749833]
フェデレートラーニング(Federated Learning, FL)は、複数のパーティが共有モデルをトレーニングできる、新興の機械学習パラダイムである。
本稿では,FedGH(Federated Global Prediction Header)アプローチを提案する。
FedGHは、クライアントモデルのための異種抽出器による表現で、共通化されたグローバルな予測ヘッダーを訓練する。
論文 参考訳(メタデータ) (2023-03-23T09:38:52Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
フェデレートラーニング(FL)は、グローバルモデルを協調的にトレーニングする複数のクライアントを含む、人気のある分散ラーニングパラダイムになっています。
データサンプルは通常、現実世界の長い尾の分布に従っており、分散化された長い尾のデータのFLは、貧弱なグローバルモデルをもたらす。
本研究では、局所的な実データとグローバルな勾配のプロトタイプを統合し、局所的なバランスの取れたデータセットを形成する。
論文 参考訳(メタデータ) (2023-01-25T03:18:10Z) - Closing the Gap between Client and Global Model Performance in
Heterogeneous Federated Learning [2.1044900734651626]
カスタムクライアントモデルをトレーニングするための選択されたアプローチが、グローバルモデルにどのように影響するかを示す。
KDとLwoF(LwoF)を併用して、改良されたパーソナライズドモデルを生成する手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T11:12:57Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - Personalized Federated Learning with Clustered Generalization [16.178571176116073]
学習環境における非I.D.データの困難な問題に対処することを目的とした,近年のパーソナライズドラーニング(PFL)について検討する。
訓練対象におけるPFL法と従来のFL法の主な違い
本稿では,FLにおける統計的不均一性の問題に対処するため,クラスタ化一般化という新しい概念を提案する。
論文 参考訳(メタデータ) (2021-06-24T14:17:00Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z) - Federated Learning With Quantized Global Model Updates [84.55126371346452]
モバイル端末がローカルデータセットを使用してグローバルモデルをトレーニングできるフェデレーション学習について検討する。
本稿では,大域的モデルと局所的モデル更新の両方を,送信前に量子化する損失FL(LFL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-18T16:55:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。