A Deep-Learning Technique to Locate Cryptographic Operations in Side-Channel Traces
- URL: http://arxiv.org/abs/2402.19037v2
- Date: Fri, 30 Aug 2024 13:58:55 GMT
- Title: A Deep-Learning Technique to Locate Cryptographic Operations in Side-Channel Traces
- Authors: Giuseppe Chiari, Davide Galli, Francesco Lattari, Matteo Matteucci, Davide Zoni,
- Abstract summary: Side-channel attacks allow extracting secret information from the execution of cryptographic primitives.
This paper presents a novel deep-learning technique to locate the time instant in which the target computed cryptographic operations are executed.
- Score: 4.746461615041115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Side-channel attacks allow extracting secret information from the execution of cryptographic primitives by correlating the partially known computed data and the measured side-channel signal. However, to set up a successful side-channel attack, the attacker has to perform i) the challenging task of locating the time instant in which the target cryptographic primitive is executed inside a side-channel trace and then ii)the time-alignment of the measured data on that time instant. This paper presents a novel deep-learning technique to locate the time instant in which the target computed cryptographic operations are executed in the side-channel trace. In contrast to state-of-the-art solutions, the proposed methodology works even in the presence of trace deformations obtained through random delay insertion techniques. We validated our proposal through a successful attack against a variety of unprotected and protected cryptographic primitives that have been executed on an FPGA-implemented system-on-chip featuring a RISC-V CPU.
Related papers
- ML-Enhanced AES Anomaly Detection for Real-Time Embedded Security [0.0]
We propose a comprehensive framework that enhances AES-128 encryption security through controlled anomaly injection and real-time anomaly detection.<n>We simulate timing and fault-based anomalies by injecting execution delays and ciphertext perturbations during encryption, generating labeled datasets for detection model training.<n>Our results show that ML-based detection significantly outperforms threshold-based methods in precision and recall while maintaining real-time performance on embedded hardware.
arXiv Detail & Related papers (2025-07-06T00:22:58Z) - Post Quantum Migration of Tor [0.40964539027092917]
This dissertation proposes an overview of the cryptographic schemes used by Tor.
It highlights the non-quantum-resistant ones and introduces theoretical performance assessment methods of a local Tor network.
arXiv Detail & Related papers (2025-03-13T10:28:03Z) - Unveiling ECC Vulnerabilities: LSTM Networks for Operation Recognition in Side-Channel Attacks [6.373405051241682]
We propose a novel approach for performing side-channel attacks on elliptic curve cryptography.
We adopt a long-short-term memory (LSTM) neural network to analyze a power trace and identify patterns of operation.
We show that current countermeasures, specifically the coordinate randomization technique, are not sufficient to protect against side channels.
arXiv Detail & Related papers (2025-02-24T17:02:40Z) - Cryptanalysis via Machine Learning Based Information Theoretic Metrics [58.96805474751668]
We propose two novel applications of machine learning (ML) algorithms to perform cryptanalysis on any cryptosystem.
These algorithms can be readily applied in an audit setting to evaluate the robustness of a cryptosystem.
We show that our classification model correctly identifies the encryption schemes that are not IND-CPA secure, such as DES, RSA, and AES ECB, with high accuracy.
arXiv Detail & Related papers (2025-01-25T04:53:36Z) - Power side-channel leakage localization through adversarial training of deep neural networks [10.840434597980723]
Supervised deep learning has emerged as an effective tool for carrying out power side-channel attacks on cryptographic implementations.
We propose a technique for identifying which timesteps in a power trace are responsible for leaking a cryptographic key.
arXiv Detail & Related papers (2024-10-29T18:04:41Z) - Time-Aware Face Anti-Spoofing with Rotation Invariant Local Binary Patterns and Deep Learning [50.79277723970418]
imitation attacks can lead to erroneous identification and subsequent authentication of attackers.
Similar to face recognition, imitation attacks can also be detected with Machine Learning.
We propose a novel approach that promises high classification accuracy by combining previously unused features with time-aware deep learning strategies.
arXiv Detail & Related papers (2024-08-27T07:26:10Z) - Hound: Locating Cryptographic Primitives in Desynchronized Side-Channel Traces Using Deep-Learning [1.0923877073891446]
This work introduces Hound, a novel deep learning-based pipeline to locate the execution of cryptographic primitives within a side-channel trace.
Hound has been validated through successful attacks on various cryptographic primitives executed on an FPGA-based system-on-chip incorporating a RISC-V CPU.
arXiv Detail & Related papers (2024-08-12T17:04:51Z) - UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
High-level semantic features are less susceptible to perturbations and not limited to forgery-specific artifacts, thus having stronger generalization.
We introduce UniForensics, a novel deepfake detection framework that leverages a transformer-based video network, with a meta-functional face classification for enriched facial representation.
arXiv Detail & Related papers (2024-07-26T20:51:54Z) - Towards Efficient Verification of Constant-Time Cryptographic
Implementations [5.433710892250037]
Constant-time programming discipline is an effective software-based countermeasure against timing side-channel attacks.
We put forward practical verification approaches based on a novel synergy of taint analysis and safety verification of self-composed programs.
Our approach is implemented as a cross-platform and fully automated tool CT-Prover.
arXiv Detail & Related papers (2024-02-21T03:39:14Z) - A near-autonomous and incremental intrusion detection system through active learning of known and unknown attacks [2.686686221415684]
Intrusion detection is a traditional practice of security experts, however, there are several issues which still need to be tackled.
We present an architecture for a hybrid Intrusion Detection System (IDS) for an adaptive and incremental detection of both known and unknown attacks.
arXiv Detail & Related papers (2023-10-26T14:37:54Z) - The Adversarial Implications of Variable-Time Inference [47.44631666803983]
We present an approach that exploits a novel side channel in which the adversary simply measures the execution time of the algorithm used to post-process the predictions of the ML model under attack.
We investigate leakage from the non-maximum suppression (NMS) algorithm, which plays a crucial role in the operation of object detectors.
We demonstrate attacks against the YOLOv3 detector, leveraging the timing leakage to successfully evade object detection using adversarial examples, and perform dataset inference.
arXiv Detail & Related papers (2023-09-05T11:53:17Z) - Custom DNN using Reward Modulated Inverted STDP Learning for Temporal
Pattern Recognition [0.0]
Temporal spike recognition plays a crucial role in various domains, including anomaly detection, keyword spotting and neuroscience.
This paper presents a novel algorithm for efficient temporal spike pattern recognition on sparse event series data.
arXiv Detail & Related papers (2023-07-15T18:57:27Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
We evaluate and compare different Natural Language Processing (NLP) and machine learning techniques used for security information extraction in research.
Based on our investigations we propose a data processing pipeline that automatically classifies unstructured text according to attackers' tactics and techniques.
arXiv Detail & Related papers (2022-07-18T09:59:21Z) - Targeted Attack for Deep Hashing based Retrieval [57.582221494035856]
We propose a novel method, dubbed deep hashing targeted attack (DHTA), to study the targeted attack on such retrieval.
We first formulate the targeted attack as a point-to-set optimization, which minimizes the average distance between the hash code of an adversarial example and those of a set of objects with the target label.
To balance the performance and perceptibility, we propose to minimize the Hamming distance between the hash code of the adversarial example and the anchor code under the $ellinfty$ restriction on the perturbation.
arXiv Detail & Related papers (2020-04-15T08:36:58Z) - DeepSIC: Deep Soft Interference Cancellation for Multiuser MIMO
Detection [98.43451011898212]
In multiuser multiple-input multiple-output (MIMO) setups, where multiple symbols are simultaneously transmitted, accurate symbol detection is challenging.
We propose a data-driven implementation of the iterative soft interference cancellation (SIC) algorithm which we refer to as DeepSIC.
DeepSIC learns to carry out joint detection from a limited set of training samples without requiring the channel to be linear.
arXiv Detail & Related papers (2020-02-08T18:31:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.