ML-Enhanced AES Anomaly Detection for Real-Time Embedded Security
- URL: http://arxiv.org/abs/2507.04197v1
- Date: Sun, 06 Jul 2025 00:22:58 GMT
- Title: ML-Enhanced AES Anomaly Detection for Real-Time Embedded Security
- Authors: Nishant Chinnasami, Rye Stahle-Smith, Rasha Karakchi,
- Abstract summary: We propose a comprehensive framework that enhances AES-128 encryption security through controlled anomaly injection and real-time anomaly detection.<n>We simulate timing and fault-based anomalies by injecting execution delays and ciphertext perturbations during encryption, generating labeled datasets for detection model training.<n>Our results show that ML-based detection significantly outperforms threshold-based methods in precision and recall while maintaining real-time performance on embedded hardware.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advanced Encryption Standard (AES) is a widely adopted cryptographic algorithm, yet its practical implementations remain susceptible to side-channel and fault injection attacks. In this work, we propose a comprehensive framework that enhances AES-128 encryption security through controlled anomaly injection and real-time anomaly detection using both statistical and machine learning (ML) methods. We simulate timing and fault-based anomalies by injecting execution delays and ciphertext perturbations during encryption, generating labeled datasets for detection model training. Two complementary detection mechanisms are developed: a threshold-based timing anomaly detector and a supervised Random Forest classifier trained on combined timing and ciphertext features. We implement and evaluate the framework on both CPU and FPGA-based SoC hardware (PYNQ-Z1), measuring performance across varying block sizes, injection rates, and core counts. Our results show that ML-based detection significantly outperforms threshold-based methods in precision and recall while maintaining real-time performance on embedded hardware. Compared to existing AES anomaly detection methods, our solution offers a low-cost, real-time, and accurate detection approach deployable on lightweight FPGA platforms.
Related papers
- Machine Learning-Based Cyberattack Detection and Identification for Automatic Generation Control Systems Considering Nonlinearities [0.6144680854063939]
AGC systems' reliance on communicated measurements exposes them to false data injection attacks (FDIAs)<n>This paper proposes a machine learning (ML)-based detection framework that identifies FDIAs and determines the compromised measurements.<n>Our results demonstrate the efficacy of the proposed method in detecting FDIAs while maintaining a low false alarm rate, with an F1-score of up to 99.98%, outperforming existing approaches.
arXiv Detail & Related papers (2025-04-12T23:06:59Z) - Payload-Aware Intrusion Detection with CMAE and Large Language Models [0.0]
Intrusion Detection Systems (IDS) are crucial for identifying malicious traffic, yet traditional signature-based methods struggle with zero-day attacks and high false positive rates.<n>This study proposes Xavier-CMAE, an enhanced Convolutional Multi-Head Attention Ensemble (CMAE) model that improves detection accuracy while reducing computational overhead.
arXiv Detail & Related papers (2025-03-23T02:56:32Z) - Cryptanalysis via Machine Learning Based Information Theoretic Metrics [58.96805474751668]
We propose two novel applications of machine learning (ML) algorithms to perform cryptanalysis on any cryptosystem.<n>These algorithms can be readily applied in an audit setting to evaluate the robustness of a cryptosystem.<n>We show that our classification model correctly identifies the encryption schemes that are not IND-CPA secure, such as DES, RSA, and AES ECB, with high accuracy.
arXiv Detail & Related papers (2025-01-25T04:53:36Z) - An Efficient Outlier Detection Algorithm for Data Streaming [51.56874851156008]
Traditional outlier detection methods, such as the Local Outlier Factor (LOF) algorithm, struggle with real-time data.<n>We propose a novel approach to enhance the efficiency of LOF algorithms for online anomaly detection, named the Efficient Incremental LOF (EILOF) algorithm.<n>The EILOF algorithm not only significantly reduces computational costs, but also systematically improves detection accuracy when the number of additional points increases.
arXiv Detail & Related papers (2025-01-02T05:12:43Z) - Privacy Preserving Anomaly Detection on Homomorphic Encrypted Data from IoT Sensors [0.9831489366502302]
Homomorphic encryption schemes are promising solutions as they enable the processing and execution of operations on IoT data while still encrypted.
We propose a novel privacy-preserving anomaly detection solution designed for homomorphically encrypted data generated by IoT devices.
arXiv Detail & Related papers (2024-03-14T12:11:25Z) - PAC-Based Formal Verification for Out-of-Distribution Data Detection [4.406331747636832]
This study places probably approximately correct (PAC) based guarantees on OOD detection using the encoding process within VAEs.
It is used to bound the detection error on unfamiliar instances with user-defined confidence.
arXiv Detail & Related papers (2023-04-04T07:33:02Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
We propose a novel selection-and-weighting-based anomaly detection framework called SWAD.
Experiments on both benchmark and real-world datasets have shown the effectiveness and superiority of SWAD.
arXiv Detail & Related papers (2021-03-08T10:56:38Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.