Disentangling representations of retinal images with generative models
- URL: http://arxiv.org/abs/2402.19186v1
- Date: Thu, 29 Feb 2024 14:11:08 GMT
- Title: Disentangling representations of retinal images with generative models
- Authors: Sarah M\"uller, Lisa M. Koch, Hendrik P. A. Lensch, Philipp Berens
- Abstract summary: We introduce a novel population model for retinal fundus images that disentangles patient attributes from camera effects.
Our results show that our model provides a new perspective on the complex relationship between patient attributes and technical confounders in retinal fundus image generation.
- Score: 12.547633373232026
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Retinal fundus images play a crucial role in the early detection of eye
diseases and, using deep learning approaches, recent studies have even
demonstrated their potential for detecting cardiovascular risk factors and
neurological disorders. However, the impact of technical factors on these
images can pose challenges for reliable AI applications in ophthalmology. For
example, large fundus cohorts are often confounded by factors like camera type,
image quality or illumination level, bearing the risk of learning shortcuts
rather than the causal relationships behind the image generation process. Here,
we introduce a novel population model for retinal fundus images that
effectively disentangles patient attributes from camera effects, thus enabling
controllable and highly realistic image generation. To achieve this, we propose
a novel disentanglement loss based on distance correlation. Through qualitative
and quantitative analyses, we demonstrate the effectiveness of this novel loss
function in disentangling the learned subspaces. Our results show that our
model provides a new perspective on the complex relationship between patient
attributes and technical confounders in retinal fundus image generation.
Related papers
- Enhancing Retinal Disease Classification from OCTA Images via Active Learning Techniques [0.8035416719640156]
Eye diseases are common in older Americans and can lead to decreased vision and blindness.
Recent advancements in imaging technologies allow clinicians to capture high-quality images of the retinal blood vessels via Optical Coherence Tomography Angiography ( OCTA)
OCTA provides detailed vascular imaging as compared to the solely structural information obtained by common OCT imaging.
arXiv Detail & Related papers (2024-07-21T23:24:49Z) - Enhance Eye Disease Detection using Learnable Probabilistic Discrete Latents in Machine Learning Architectures [1.6000489723889526]
Ocular diseases, including diabetic retinopathy and glaucoma, present a significant public health challenge.
Deep learning models have emerged as powerful tools for analysing medical images, such as retina imaging.
Challenges persist in model relibability and uncertainty estimation, which are critical for clinical decision-making.
arXiv Detail & Related papers (2024-01-21T04:14:54Z) - Gravity Network for end-to-end small lesion detection [50.38534263407915]
This paper introduces a novel one-stage end-to-end detector specifically designed to detect small lesions in medical images.
Precise localization of small lesions presents challenges due to their appearance and the diverse contextual backgrounds in which they are found.
We refer to this new architecture as GravityNet, and the novel anchors as gravity points since they appear to be "attracted" by the lesions.
arXiv Detail & Related papers (2023-09-22T14:02:22Z) - ROCT-Net: A new ensemble deep convolutional model with improved spatial
resolution learning for detecting common diseases from retinal OCT images [0.0]
This paper presents a new enhanced deep ensemble convolutional neural network for detecting retinal diseases from OCT images.
Our model generates rich and multi-resolution features by employing the learning architectures of two robust convolutional models.
Our experiments on two datasets and comparing our model with some other well-known deep convolutional neural networks have proven that our architecture can increase the classification accuracy up to 5%.
arXiv Detail & Related papers (2022-03-03T17:51:01Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z) - Multi-Disease Detection in Retinal Imaging based on Ensembling
Heterogeneous Deep Learning Models [0.0]
We propose an innovative multi-disease detection pipeline for retinal imaging.
Our pipeline includes state-of-the-art strategies like transfer learning, class weighting, real-time image augmentation and Focal loss utilization.
arXiv Detail & Related papers (2021-03-26T18:02:17Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
We present a novel contrastive learning strategy called it Proactive Pseudo-Intervention (PPI)
PPI leverages proactive interventions to guard against image features with no causal relevance.
We also devise a novel causally informed salience mapping module to identify key image pixels to intervene, and show it greatly facilitates model interpretability.
arXiv Detail & Related papers (2020-12-06T20:30:26Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
Low-quality fundus images increase uncertainty in clinical observation and lead to the risk of misdiagnosis.
We propose a clinically oriented fundus enhancement network (cofe-Net) to suppress global degradation factors.
Experiments on both synthetic and real images demonstrate that our algorithm effectively corrects low-quality fundus images without losing retinal details.
arXiv Detail & Related papers (2020-05-12T08:01:16Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.