Efficient Lifelong Model Evaluation in an Era of Rapid Progress
- URL: http://arxiv.org/abs/2402.19472v2
- Date: Sat, 23 Nov 2024 22:30:55 GMT
- Title: Efficient Lifelong Model Evaluation in an Era of Rapid Progress
- Authors: Ameya Prabhu, Vishaal Udandarao, Philip Torr, Matthias Bethge, Adel Bibi, Samuel Albanie,
- Abstract summary: We introduce Sort & Search (S&S), which reuses previously evaluated models by leveraging dynamic programming algorithms to selectively rank and sub-select test samples.
S&S achieves highly-efficient approximate accuracy measurement, reducing compute cost from 180 GPU days to 5 GPU hours on a single A100 GPU, with low approximation error and memory cost of 100MB.
Our work highlights issues with current accuracy prediction metrics, suggesting a need to move towards sample-level evaluation metrics.
- Score: 40.57576540258748
- License:
- Abstract: Standardized benchmarks drive progress in machine learning. However, with repeated testing, the risk of overfitting grows as algorithms over-exploit benchmark idiosyncrasies. In our work, we seek to mitigate this challenge by compiling ever-expanding large-scale benchmarks called Lifelong Benchmarks. These benchmarks introduce a major challenge: the high cost of evaluating a growing number of models across very large sample sets. To address this challenge, we introduce an efficient framework for model evaluation, Sort & Search (S&S)}, which reuses previously evaluated models by leveraging dynamic programming algorithms to selectively rank and sub-select test samples. To test our approach at scale, we create Lifelong-CIFAR10 and Lifelong-ImageNet, containing 1.69M and 1.98M test samples for classification. Extensive empirical evaluations across over 31,000 models demonstrate that S&S achieves highly-efficient approximate accuracy measurement, reducing compute cost from 180 GPU days to 5 GPU hours (about 1000x reduction) on a single A100 GPU, with low approximation error and memory cost of <100MB. Our work also highlights issues with current accuracy prediction metrics, suggesting a need to move towards sample-level evaluation metrics. We hope to guide future research by showing our method's bottleneck lies primarily in generalizing Sort beyond a single rank order and not in improving Search.
Related papers
- Bag of Tricks for Inference-time Computation of LLM Reasoning [10.366475014241407]
We investigate and benchmark diverse inference-time computation strategies across reasoning tasks of varying complexity.
Our ablation studies reveal that previously overlooked strategies can significantly enhance performance.
We establish a standardized benchmark for inference-time computation by systematically evaluating six representative methods across eight reasoning tasks.
arXiv Detail & Related papers (2025-02-11T02:31:11Z) - Do Large Language Model Benchmarks Test Reliability? [66.1783478365998]
We investigate how well current benchmarks quantify model reliability.
Motivated by this gap in the evaluation of reliability, we propose the concept of so-called platinum benchmarks.
We evaluate a wide range of models on these platinum benchmarks and find that, indeed, frontier LLMs still exhibit failures on simple tasks.
arXiv Detail & Related papers (2025-02-05T18:58:19Z) - s1: Simple test-time scaling [148.4204982041058]
Test-time scaling is a promising new approach to language modeling that uses extra test-time compute to improve performance.
We seek the simplest approach to achieve test-time scaling and strong reasoning performance.
arXiv Detail & Related papers (2025-01-31T18:48:08Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer.
Our proposed method, CoRAG, allows the model to dynamically reformulate the query based on the evolving state.
arXiv Detail & Related papers (2025-01-24T09:12:52Z) - It's all about PR -- Smart Benchmarking AI Accelerators using Performance Representatives [40.197673152937256]
Training of statistical performance models often requires vast amounts of data, leading to a significant time investment and can be difficult in case of limited hardware availability.
We propose a novel performance modeling methodology that significantly reduces the number of training samples while maintaining good accuracy.
We achieve a Mean Absolute Percentage Error (MAPE) of as low as 0.02% for single-layer estimations and 0.68% for whole estimations with less than 10000 training samples.
arXiv Detail & Related papers (2024-06-12T15:34:28Z) - Efficient Benchmarking of Language Models [22.696230279151166]
We present the problem of Efficient Benchmarking, namely, intelligently reducing the costs of LM evaluation without compromising reliability.
Using the HELM benchmark as a test case, we investigate how different benchmark design choices affect the computation-reliability trade-off.
We propose an evaluation algorithm, that, when applied to the HELM benchmark, leads to dramatic cost savings with minimal loss of benchmark reliability.
arXiv Detail & Related papers (2023-08-22T17:59:30Z) - How Does Generative Retrieval Scale to Millions of Passages? [68.98628807288972]
We conduct the first empirical study of generative retrieval techniques across various corpus scales.
We scale generative retrieval to millions of passages with a corpus of 8.8M passages and evaluating model sizes up to 11B parameters.
While generative retrieval is competitive with state-of-the-art dual encoders on small corpora, scaling to millions of passages remains an important and unsolved challenge.
arXiv Detail & Related papers (2023-05-19T17:33:38Z) - How not to Lie with a Benchmark: Rearranging NLP Leaderboards [0.0]
We examine popular NLP benchmarks' overall scoring methods and rearrange the models by geometric and harmonic mean.
We analyze several popular benchmarks including GLUE, SuperGLUE, XGLUE, and XTREME.
arXiv Detail & Related papers (2021-12-02T15:40:52Z) - Continuous Optimization Benchmarks by Simulation [0.0]
Benchmark experiments are required to test, compare, tune, and understand optimization algorithms.
Data from previous evaluations can be used to train surrogate models which are then used for benchmarking.
We show that the spectral simulation method enables simulation for continuous optimization problems.
arXiv Detail & Related papers (2020-08-14T08:50:57Z) - The Devil is in Classification: A Simple Framework for Long-tail Object
Detection and Instance Segmentation [93.17367076148348]
We investigate performance drop of the state-of-the-art two-stage instance segmentation model Mask R-CNN on the recent long-tail LVIS dataset.
We unveil that a major cause is the inaccurate classification of object proposals.
We propose a simple calibration framework to more effectively alleviate classification head bias with a bi-level class balanced sampling approach.
arXiv Detail & Related papers (2020-07-23T12:49:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.